Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments
-
摘要: 具有良好力学性能和高导热性的碳纳米管垂直阵列(VACNT)可用作热管理中的有效热界面材料。为了利用沿碳纳米管轴向的高导热性,需要优化碳纳米管垂直阵列的结晶度和高度。然而,碳纳米管垂直阵列的生长参数空间(如退火时间、催化剂种类、生长温度、载气、碳源等)复杂,结构特征之间相互影响,同时提高碳纳米管垂直阵列的高度和质量仍是一个巨大的挑战。与此同时,缺乏对参数调控方向的指导进一步增加了实验结果的不确定性,并限制了产物结构优化的效率。本研究开发了一种文献挖掘-机器学习-高通量制备策略,有效优化了碳纳米管垂直阵列的高度和质量。为了揭示碳纳米管垂直阵列结构与关键生长参数之间的潜在关系,采用随机森林回归算法对一组已发布的样本数据(864个样本)进行建模,并利用机器学习模型解释包 SHAP(SHapley Additive exPlanations)分析获得影响垂直阵列高度和结晶度的主要生长参数。经分析确定,高通量实验旨在调节4个关键参数:生长温度、生长时间、催化剂组分和碳源浓度。结果发现,经筛选的 Fe/Gd/Al2O3 催化剂能够生长出具有毫米级高度和更高结晶度的碳纳米管垂直阵列。结果表明,文献挖掘、高通量实验和基于数据的机器学习可以有效地处理碳纳米管生长等多参数过程,提高对结构的控制。Abstract: Vertically aligned carbon nanotube (VACNT) arrays with good mechanical properties and high thermal conductivity can be used as effective thermal interface materials in thermal management. In order to take advantage of the high thermal conductivity along the axis of nanotubes, the quality and height of the arrays need to be optimized. However, the immense synthesis parameter space for VACNT arrays and the interdependence of structural features make it challenging to improve both their height and quality. We have developed a literature mining approach combined with machine learning and high-throughput design to efficiently optimize the height and quality of the arrays. To reveal the underlying relationship between VACNT structures and their key growth parameters, we used random forest regression (RFR) and SHapley Additive exPlanation (SHAP) methods to model a set of published sample data (864 samples). High-throughput experiments were designed to change 4 key parameters: growth temperature, growth time, catalyst composition, and concentration of the carbon source. It was found that a screened Fe/Gd/Al2O3 catalyst was able to grow VACNT arrays with millimeter-scale height and improved quality. Our results demonstrate that this approach can effectively deal with multi-parameter processes such as nanotube growth and improve control over their structures.
-
Figure 2. SHAP summary plots of the effects of growth parameters in the RFR models for (a) height, and (b) IG/ID values, in descending order. All of the variables in the database constitute each point in the image, the color of the point indicates the value of the input variable, and the horizontal location shows whether the effect of that value is associated with a higher or a lower prediction. t(G.) and t(A.) denote the growth time and annealing time, respectively
Figure 5. Characterizations of VACNT arrays before and after optimization. (a) Comparison of Raman spectra taken from the top of the VACNT arrays using a wavelength of 532 nm laser; (b) Cross-sectional SEM images of the VACNT arrays; TEM images and the inserted diameter distribution of VACNT arrays grown from (c) 1.8 nm Fe catalyst and (d) 1.5 nm Fe-0.2 nm Gd catalyst
Table 1. Regression model validation and performance evaluation
Output
parametersRegression
modelPerformance evaluation metrics RMSE MAE Coefficient of
determination
(R2)Height LR 0.57 0.33 0.12 RFR 0.15 0.09 0.87 SVR 0.44 0.19 0.52 IG/ID LR 2.79 2.44 0.55 RFR 2.22 1.64 0.73 SVR 2.58 1.97 0.68 -
[1] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. doi: 10.1103/PhysRevLett.87.215502 [2] Aliev A E, Guthy C, Zhang M, et al. Thermal transport in MWCNT sheets and yarns[J]. Carbon,2007,45(15):2880-2888. doi: 10.1016/j.carbon.2007.10.010 [3] Yang D J, Zhang Q, Chen G, et al. Thermal conductivity of multiwalled carbon nanotubes[J]. Physical Review B,2002,66(16):165440. doi: 10.1103/PhysRevB.66.165440 [4] Tong T, Zhao Y, Delzeit L, et al. Dense, vertically aligned multiwalled carbon nanotube arrays as thermal interface materials[J]. Ieee Transactions on Components and Packaging Technologies,2007,30(1):92-100. doi: 10.1109/TCAPT.2007.892079 [5] Shiomi J, Maruyama S. Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes[J]. Japanese Journal of Applied Physics,2008,47(4):2005-2009. doi: 10.1143/JJAP.47.2005 [6] Chen G, Futaba D N, Kimura H, et al. Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities[J]. ACS Nano,2013,7(11):10218-10224. doi: 10.1021/nn404504f [7] Geng C, Chen Y X, Shi L L, et al. Design of active sites in carbon materials for electrochemical potassium storage[J]. New Carbon Materials,2022,37(3):461-483. doi: 10.1016/S1872-5805(22)60612-7 [8] El‐Bousiydy H, Lombardo T, Primo EN, et al. What can text mining tell us about lithium‐ion battery researchers’ habits?[J]. Batteries Supercaps,2021,4(5):758-466. doi: 10.1002/batt.202000288 [9] Kim E, Huang K, Tomala A, et al. Data Descriptor: Machine-learned and codified synthesis parameters of oxide materials[J]. Scientific Data,2017,4:170127. doi: 10.1038/sdata.2017.127 [10] Ji Z H, Zhang L L, Tang D M, et al. High-throughput screening and machine learning for the efficient growth of high-quality single-wall carbon nanotubes[J]. Nano Research,2021,14(12):4610-4615. doi: 10.1007/s12274-021-3387-y [11] Rao R, Carpena-Núñez J, Nikolaev P, et al. Advanced machine learning decision policies for diameter control of carbon nanotubes[J]. Computational Materials,2021,7(1):157. doi: 10.1038/s41524-021-00629-y [12] Cassell A M, Ng H T, Delzeit L, et al. High throughput methodology for carbon nanomaterials discovery and optimization[J]. Applied Catalysis A-General,2003,254(1):85-96. doi: 10.1016/S0926-860X(03)00279-5 [13] Sugime H, Noda S. Millimeter-tall single-walled carbon nanotube forests grown from ethanol[J]. Carbon,2010,48(8):2203-2211. doi: 10.1016/j.carbon.2010.02.024 [14] Gao Y, Marconnet A M, Xiang R, et al. Heat capacity, thermal conductivity, and interface resistance extraction for single-walled carbon nanotube films using frequency-domain thermoreflectance[J]. Ieee Transactions on Components Packaging and Manufacturing Technology,2013,3(9):1524-1532. doi: 10.1109/TCPMT.2013.2254175 [15] Murakami Y, Einarsson E, Edamura T, et al. Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology[J]. Carbon,2005,43(13):2664-2676. doi: 10.1016/j.carbon.2005.05.036 [16] Shiratori Y, Furuichi K, Noda S, et al. Field emission properties of single-walled carbon nanotubes with a variety of emitter morphologies[J]. Japanese Journal of Applied Physics,2008,47(6):4780-4787. doi: 10.1143/JJAP.47.4780 [17] Thurakitseree T, Kramberger C, Kumamoto A, et al. Reversible diameter modulation of single-walled carbon nanotubes by acetonitrile-containing feedstock[J]. ACS Nano,2013,7(3):2205-2211. doi: 10.1021/nn3051852 [18] Thurakitseree T, Kramberger C, Zhao P, et al. Diameter-controlled and nitrogen-doped vertically aligned single-walled carbon nanotubes[J]. Carbon,2012,50(7):2635-2640. doi: 10.1016/j.carbon.2012.02.023 [19] Xiang R, Einarsson E, Murakami Y, et al. Diameter modulation of vertically aligned single-walled carbon nanotubes[J]. ACS Nano,2012,6(8):7472-7479. doi: 10.1021/nn302750x [20] hang C, Yan F, Allen C S, et al. Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support[J]. Journal of Applied Physics,2010,108(2):024311. doi: 10.1063/1.3456168 [21] Wirth C T, Zhang C, Zhong G, et al. Diffusion- and reaction-limited growth of carbon nanotube forests[J]. ACS Nano,2009,3(11):3560-3566. doi: 10.1021/nn900613e [22] Esconjauregui S, Fouquet M, Bayer B C, et al. Growth of ultrahigh density vertically aligned carbon nanotube forests for interconnects[J]. ACS Nano,2010,4(12):7431-7436. doi: 10.1021/nn1025675 [23] Ducati C, Alexandrou I, Chhowalla M, et al. The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition[J]. Journal of Applied Physics,2004,95(11):6387-6391. doi: 10.1063/1.1728293 [24] Ducati C, Alexandrou I, Chhowalla M, et al. Temperature selective growth of carbon nanotubes by chemical vapor deposition[J]. Journal of Applied Physics,2002,92(6):3299-3303. doi: 10.1063/1.1499746 [25] Nessim G D, Hart A J, Kim J S, et al. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment[J]. Nano letters,2008,8(11):3587-3593. doi: 10.1021/nl801437c [26] Meshot E R, Plata D L, Tawfick S, et al. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst[J]. ACS Nano,2009,3(9):2477-2486. doi: 10.1021/nn900446a [27] Meshot E R, Hart A J. Abrupt self-termination of vertically aligned carbon nanotube growth[J]. Applied Physics Letters,2008,92(11):113107. doi: 10.1063/1.2889497 [28] Meshot E R, Bedewy M, Lyons K M, et al. Measuring the lengthening kinetics of aligned nanostructures by spatiotemporal correlation of height and orientation[J]. Nanoscale,2010,2(6):896-900. doi: 10.1039/b9nr00343f [29] Bedewy M, Meshot E R, Reinker M J, et al. Population growth dynamics of carbon nanotubes[J]. ACS Nano,2011,5(11):8974-8989. doi: 10.1021/nn203144f [30] Bedewy M, Meshot E R, Hart A J. Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth[J]. Carbon,2012,50(14):5106-5116. doi: 10.1016/j.carbon.2012.06.051 [31] Bedewy M, Farmer B, Hart A J. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth[J]. ACS Nano,2014,8(6):5799-5812. doi: 10.1021/nn500698z [32] Wang J, Yoo Y, Gao C, et al. Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science,1998,279(5357):1712-1714. doi: 10.1126/science.279.5357.1712 [33] Li X, Cao A, Jung Y J, et al. Bottom-up growth of carbon nanotube multilayers: unprecedented growth[J]. Nano letters,2005,5(10):1997-2000. doi: 10.1021/nl051486q [34] Zhang Y, Gregoire J M, Van Dover R B, et al. Ethanol-promoted high-yield growth of few-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2010,114(14):6389-6395. doi: 10.1021/jp100358j [35] Lundberg S M, Lee S I. A unified approach to interpreting model predictions; proceedings of the 31st annual conference on neural information processing systems (NIPS), long beach, CA, F Dec 04-09, 2017 [C] [36] Sugime H, Sato T, Nakagawa R, et al. Gd-enhanced growth of multi-millimeter-tall forests of single-wall carbon nanotubes[J]. ACS Nano,2019,13(11):13208-13216. doi: 10.1021/acsnano.9b06181 [37] Chen Z, Kim DY, Hasegawa K, et al. Methane-assisted chemical vapor deposition yielding millimeter-tall single-wall carbon nanotubes of smaller diameter[J]. ACS Nano,2013,7(8):6719-6728. doi: 10.1021/nn401556t [38] Hasegawa K, Noda S. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water[J]. ACS Nano,2011,5(2):975-984. doi: 10.1021/nn102380j [39] Miura S, Yoshihara Y, Asaka M, et al. Millimeter-tall carbon nanotube arrays grown on aluminum substrates[J]. Carbon,2018,130:834-842. doi: 10.1016/j.carbon.2018.01.075 [40] Li MC, Yasui K, Sugime H, et al. Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlOx catalyst annealed without CO2[J]. Carbon,2021,185:264-271. doi: 10.1016/j.carbon.2021.09.031 [41] Sugime H, Sato T, Nakagawa R, et al. Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources[J]. Carbon,2021,172:772-780. doi: 10.1016/j.carbon.2020.10.066 [42] Youn S K, Park H G. Morphological evolution of Fe-Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes[J]. Journal of Physical Chemistry C,2013,117(36):18657-18665. doi: 10.1021/jp402941u [43] Cho W D, Schulz M, Shanov V. Growth termination mechanism of vertically aligned centimeter long carbon nanotube arrays[J]. Carbon,2014,69:609-620. doi: 10.1016/j.carbon.2013.12.088 [44] Cho W D, Schulz M, Shanot V. Growth and characterization of vertically aligned centimeter long CNT arrays[J]. Carbon,2014,72:264-273. doi: 10.1016/j.carbon.2014.01.074 [45] Chen G, Seki Y, Kimura H, et al. Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition[J]. Sci Rep,2014,4:3804. doi: 10.1038/srep03804 [46] Sugime H, Noda S, Maruyama S, et al. Multiple "optimum" conditions for Co-Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests[J]. Carbon,2009,47(1):234-241. doi: 10.1016/j.carbon.2008.10.001 [47] Chen B, Wu P. Aligned carbon nanotubes by catalytic decomposition Of C2H2 over Ni-Cr alloy[J]. Carbon,2005,43(15):3172-3177. doi: 10.1016/j.carbon.2005.06.024 [48] Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation[J]. Anesth Analg,2018,126(5):1763-1768. doi: 10.1213/ANE.0000000000002864 [49] Shiratori Y, Sugime H, Noda S. Combinatorial evaluation for field emission properties of carbon nanotubes[J]. Journal of Physical Chemistry C,2008,112(46):17974-17982. doi: 10.1021/jp807078h -
20230507supportting imformation.pdf
-