3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption
-
摘要: 创新的微观结构设计和合适的多组分策略对于具有强吸收和宽有效吸收频带(EAB)的先进电磁吸波材料(EAM)仍然具有挑战性。本文采用简单的水热还原法制备了自组装的3D网络结构NiCo2(CO3)3/RGO(NCR)气凝胶。独特的微观结构和多组分不仅解决了NiCo2(CO3)3颗粒的物理团聚,而且可以调整电磁参数以提高阻抗匹配和衰减能力。界面基体和宏观3D互联网格结构的协同效应可以实现高电磁波吸收(EMA)性能,在2.3 mm处最小反射损耗(RLmin)值为−58.5 dB,EAB为6.5 GHz。NiCo2(CO3)3/RGO气凝胶优异的EMA性能可归因于3D多孔结构的多重反射、散射和弛豫过程以及界面基体的强界面极化。
-
关键词:
- NiCo2(CO3)3/RGO 气凝胶 /
- 结构设计 /
- 界面极化 /
- 微波吸收
Abstract: Advanced electromagnetic absorbing materials (EAMs) with strong absorption and a wide effective absorption bandwidth (EAB), using innovative microstructural design and suitable multicomponents remain a persistent challenge. Here, we report the production of a material by the hydrothermal reduction of a mixture of graphene oxide (GO), Ni(NO3)2·6H2O, and Co(NO3)2·6H2O, resulting in reduced GO (RGO) with a self-assembled 3D mesh structure filled with NiCo2(CO3)3 . The unique microstructure of this assembly not only solves the problem of NiCo2(CO3)3 particles agglomerating but also changes the electromagnetic parameters, thereby improving the impedance matching and attenuation ability. High electromagnetic wave absorption (EMA) was achieved by combining the 3D interconnected mesh structure and the various interfaces between NiCo2(CO3)3 and RGO. The minimal reflection loss (RLmin) was −58.5 dB at 2.3 mm, and the EAB was 6.5 GHz. The excellent EMA performance of the aerogel can be attributed to the multiple reflection, scattering, and relaxation process of the porous 3D structure as well as the strong polarization of the interfacial matrix.n of the interfacial matrix. -
Figure 2. (a) XRD patterns of NC, NCR-1, NCR-2 and RGO. (b) Digital photograph of NCR-1 aerogel. (c) SEM image of NC. (d-f) SEM images of NCR-1 with different resolutions. (g-i) SEM images of NCR-2 with different resolutions. (j-m) EDS elemental mapping images of the NCR-1 (dashed area in Fig. e). (j) Co, (k) Ni, (l) O, (m) C
-
[1] Liu D, Mou P, Wei Q, et al. Nanowires/nanohelices hybrid carbon aerogels as the lightweight and hydrophobic microwave absorbers with excellent electrothermal properties[J]. Carbon,2023,204:7-16. doi: 10.1016/j.carbon.2022.12.038 [2] Feng A, Hou T, Jia Z, et al. Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber[J]. RSC Advances,2020,10(18):10510-10518. doi: 10.1039/C9RA10327A [3] Hua A, Li Y, Pan D, et al. Enhanced wideband microwave absorption of hollow carbon nanowires derived from a template of Al4C3@C nanowires[J]. Carbon,2020,161:252-258. doi: 10.1016/j.carbon.2020.01.081 [4] Liu X, Huang Y, Zhao X, et al. Core-shell N-doped carbon nanofibers@poly(3, 4-ethylenedioxythiophene): Flexible composite fibers for enhanced electromagnetic wave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,163:107227. doi: 10.1016/j.compositesa.2022.107227 [5] Zhang M, Ling H, Ding S, et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber[J]. Carbon,2021,174:248-259. doi: 10.1016/j.carbon.2020.12.005 [6] Xu H, Yin X, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Appl Mater Interfaces,2017,9(7):6332-6341. doi: 10.1021/acsami.6b15826 [7] Song L, Chen Y, Gao Q, et al. Low weight, low thermal conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel[J]. Composites Part A: Applied Science and Manufacturing,2022,158:106980. doi: 10.1016/j.compositesa.2022.106980 [8] Liang L, Li Q, Yan X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano,2021,15(4):6622-6632. doi: 10.1021/acsnano.0c09982 [9] Xin W L, Lu K K, Shan D. In situ doped CoCO3/ZIF-67 derived Co-N-C/CoOx catalysts for oxygen reduction reaction[J]. Applied Surface Science,2019,481:313-318. doi: 10.1016/j.apsusc.2019.03.021 [10] Talebi P, Singh H, Rani E, et al. Surface plasmon-driven photocatalytic activity of Ni@NiO/NiCO3 core-shell nanostructures[J]. RSC Adv,2021,11(5):2733-2743. doi: 10.1039/D0RA09666K [11] Cheng C, Chen F, Cheng Y, et al. Hydrothermal synthesis of caterpillar-like one-dimensional NiCO3 nanosheet arrays and primary lithium battery application[J]. Dalton Trans,2022,51(17):6832-6838. doi: 10.1039/D2DT00091A [12] Zhao Z, Wang Z, Denis D K, et al. Intrinsic lithium storage mechanisms and superior electrochemical behaviors of monodispersed hierarchical CoCO3 sub-microspheroids as a competitive anode towards Li-ion batteries[J]. Electrochimica Acta,2019,307:20-29. doi: 10.1016/j.electacta.2019.03.171 [13] Wang P, Zhang F, Wu C, et al. Cobalt carbonate-coated nitrogen-doped carbon nanotubes with a sea-cucumber morphology for electrocatalytic water splitting[J]. Langmuir,2021,37(50):14767-14776. doi: 10.1021/acs.langmuir.1c02874 [14] Liu Z, Zhou X, Zhang Y, et al. Fabrication of monodispersed, uniform rod-shaped FeCO3/CoCO3 microparticles using a facile solvothermal method and their excellent microwave absorbing properties[J]. Journal of Alloys and Compounds,2016,665:388-393. doi: 10.1016/j.jallcom.2016.01.054 [15] Wei H, Wang X, Tong G, et al. Morphology, size and defect engineering in CeOHCO3 hierarchical structures for ultra-wide band microwave absorption[J]. Journal of Materials Chemistry C,2022,10(1):281-293. doi: 10.1039/D1TC04430C [16] Cui Y, Yang K, Zhang F, et al. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion[J]. Composites Part A:Applied Science and Manufacturing,2022,158:106986. doi: 10.1016/j.compositesa.2022.106986 [17] Liu Z, Fan Y, Liu Z, et al. Wrinkled 3D MoS2/RGO/NC composite microspheres: Optimal composition and microwave absorbing properties[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161. [18] Lou Z, Yuan C, Zhang Y, et al. Synthesis of porous carbon matrix with inlaid Fe3C/Fe3O4 micro-particles as an effective electromagnetic wave absorber from natural wood shavings[J]. Journal of Alloys and Compounds,2019,775:800-809. doi: 10.1016/j.jallcom.2018.10.213 [19] Wang S, Li D, Zhou Y, et al. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption[J]. ACS Nano,2020,14(7):8634-8645. doi: 10.1021/acsnano.0c03013 [20] Wang J, Cui Y, Wu F, et al. Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption[J]. Carbon,2020,165:275-285. doi: 10.1016/j.carbon.2020.04.090 [21] Zhang B, Wang J, Wang T, et al. High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method[J]. Composites Science and Technology,2019,176:54-63. doi: 10.1016/j.compscitech.2019.04.001 [22] Zhang M, Ling H, Wang T, et al. An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism[J]. Nanomicro Lett,2022,14(1):157. [23] Hu K, Szkopek T, Cerruti M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels[J]. Journal of Materials Chemistry A,2017,5(44):23123-23130. doi: 10.1039/C7TA07006C [24] Yan L, Hong C, Sun B, et al. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Appl Mater Interfaces,2017,9(7):6320-6331. doi: 10.1021/acsami.6b15795 [25] Gui W, Duan F, Mu X. Enhanced adsorption of graphene oxide on iron surface induced by functional groups[J]. Applied Surface Science, 2020, 528. [26] Zhou Z, Zhao W, Zhao Z, et al. Boosted interfacial polarization from the multidimensional core–shell–flat heterostructure CNP@PDA@GO/rGO for enhanced microwave absorption[J]. Industrial & Engineering Chemistry Research,2021,60(33):12343-12352. [27] Yoo M J, Park H B. Effect of hydrogen peroxide on properties of graphene oxide in hummers method[J]. Carbon,2019,141:515-522. doi: 10.1016/j.carbon.2018.10.009 [28] Zhao N, Feng Y, Zhao H, et al. Simple electrodeposition of 3D NiCoFe-layered double hydroxide nanosheet assembled nanospheres/nanoflowers on carbon cloth for high performance hybrid supercapacitors[J]. Journal of Alloys and Compounds, 2022, 901. [29] Xu H, Wang B, Shan C, et al. Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst[J]. ACS Appl Mater Interfaces,2018,10(7):6336-6345. doi: 10.1021/acsami.7b17939 [30] Liao F, Yang G, Cheng Q, et al. Rational design and facile synthesis of Ni-Co-Fe ternary LDH porous sheets for high-performance aqueous asymmetric supercapacitor[J]. Electrochimica Acta, 2022, 428. [31] Gnanamoorthy G, Karthikeyan V, Ali D, et al. Realization of rGO/ZnCo2O4 nanocomposites enhanced for the antimicrobial, electrochemical and photocatalytic activities[J]. Diamond and Related Materials, 2021, 120. [32] Gupta B, Kumar N, Panda K, et al. Role of oxygen functional groups in reduced graphene oxide for lubrication[J]. Sci Rep,2017,7:45030. doi: 10.1038/srep45030 [33] Lai Y C, Chen S Q, Mou L Y, et al . Nanoscale electromagnetic boundary conditions based on Maxwell’s equations[J]. Acta Physica Sinica, 2021, 70(23). [34] Yu T, Qiu J, Liao J, et al. Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber[J]. Journal of Alloys and Compounds,2021,867:159046. doi: 10.1016/j.jallcom.2021.159046 [35] Shao G, Ovsianytskyi O, Bekheet M F, et al. On-chip assembly of 3D graphene-based aerogels for chemiresistive gas sensing[J]. Chem Commun (Camb),2020,56(3):450-453. doi: 10.1039/C9CC09092D [36] Heine C, Lechner B A, Bluhm H, et al. Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-Ray photoelectron spectroscopy[J]. J Am Chem Soc,2016,138(40):13246-13252. doi: 10.1021/jacs.6b06939 [37] Wang S G, Lin J, Fan C Y, et al. Target encapsulating NiMoO4 nanocrystals into 1D carbon nanofibers as free-standing anode material for lithium-ion batteries with enhanced cycle performance[J]. Journal of Alloys and Compounds,2020,830:154648. doi: 10.1016/j.jallcom.2020.154648 [38] Yang J, Zhang X, Zhou X, et al. Controlled synthesis of nickel carbide nanoparticles and their application in lithium storage[J]. Chemical Engineering Journal,2018,352:940-946. doi: 10.1016/j.cej.2018.06.066 [39] Su J, Nie Z, Feng Y, et al. Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,162:107140. doi: 10.1016/j.compositesa.2022.107140 [40] Golovin A V, Korsakov A V, Gavryushkin P N, et al. Raman spectra of nyerereite, gregoryite, and synthetic pure Na2Ca(CO3)2: diversity and application for the study micro inclusions[J]. Journal of Raman Spectroscopy,2017,48(11):1559-1565. doi: 10.1002/jrs.5143 [41] Arefiev A, Shatskiy A, Bekhtenova A, et al. Raman study of quench products of alkaline carbonate melt at 3 and 6 GPa: Link to the pressure of origin[J]. Journal of Raman Spectroscopy,2022,53(12):2110-2122. doi: 10.1002/jrs.6438 [42] Xu R, Xu D, Zeng Z, et al. CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption[J]. Chemical Engineering Journal,2022,427:130796. doi: 10.1016/j.cej.2021.130796 [43] Yuan H, Yan F, Li C, et al. Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material[J]. ACS Appl Mater Interfaces,2018,10(1):1399-1407. doi: 10.1021/acsami.7b15559 [44] Liang J, Chen J, Shen H, et al. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption[J]. Chemistry of Materials,2021,33(5):1789-1798. doi: 10.1021/acs.chemmater.0c04734 [45] Ji H, Li J, Zhang J, et al. Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene[J]. Composites Part A:Applied Science and Manufacturing,2019,123:158-169. doi: 10.1016/j.compositesa.2019.05.012 [46] Zheng S, Zeng Z, Qiao J, et al. Facile preparation of C/MnO/Co nanocomposite fibers for High-Performance microwave absorption[J]. Composites Part A:Applied Science and Manufacturing,2022,155:106814. doi: 10.1016/j.compositesa.2022.106814 [47] Liu J, Liang H, Zhang Y, et al. Facile synthesis of ellipsoid-like MgCo2O4/Co3O4 composites for strong wideband microwave absorption application[J]. Composites Part B:Engineering,2019,176:107240. doi: 10.1016/j.compositesb.2019.107240 [48] Zhao Z, Xu S, Du Z, et al. Metal–organic framework-based PB@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):7183-7192. [49] Guan G, Gao G, Xiang J, et al. CoFe2/BaTiO3 hybrid nanofibers for microwave absorption[J]. ACS Applied Nano Materials,2020,3(8):8424-8437. doi: 10.1021/acsanm.0c01855 [50] Zhong W, Li B, Ma Z, et al. Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption[J]. Carbon,2023,202:235-243. doi: 10.1016/j.carbon.2022.10.086 [51] Jiang B, Yang W, Wang C, et al. Lightweight porous cobalt-encapsulated Nitrogen-Doped Carbon nanotubes for tunable, efficient and stable electromagnetic waves absorption[J]. Carbon,2023,202:173-186. doi: 10.1016/j.carbon.2022.10.032 [52] Wang Y, Bo J, Sai C, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Mater,2021,36(6):1016. doi: 10.1016/S1872-5805(21)60095-1 [53] Li Y, Sun N, Liu J, et al. Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations[J]. Composites Science and Technology,2018,159:240-250. doi: 10.1016/j.compscitech.2018.02.014 [54] Li Y, Wang G, Gong A, et al. High-performance ferroelectric electromagnetic attenuation materials with multiple polar units based on nanodomain engineering[J]. Small,2022,18(12):2106302. doi: 10.1002/smll.202106302 [55] Qin M, Zhang L, Zhao X, et al. Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber[J]. Advanced Functional Materials,2021,31(30):2103436. doi: 10.1002/adfm.202103436 [56] Zhou M, Xu X, Wan G, et al. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers[J]. Nano Research,2022,15(10):8677-8687. doi: 10.1007/s12274-022-4521-1 [57] Xu H, Li B, Jiang X, et al. Fabrication of N−doped carbon nanotube/carbon fiber dendritic composites with abundant interfaces for electromagnetic wave absorption[J]. Carbon,2023,201:234-243. doi: 10.1016/j.carbon.2022.09.033 [58] Tsangaris G M, Psarras G C, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems[J]. Journal of Materials Science,1998,3:2027-2037. [59] Xiang Z, Huang C, Song Y, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon,2020,167:364-377. doi: 10.1016/j.carbon.2020.06.015 -
-20230603Supporting Information.pdf
-