Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity
-
摘要: 太阳能驱动的界面水蒸发(SIVG)技术是一种新兴的淡水生产技术,具有低能耗、环保、高效等优点。碳基光热材料(CPTMs)因其优异的光热转换性能,可以在SIVG过程中引入温度和盐度梯度,为SIVG系统中蒸汽和电力的产生提供巨大的潜力。本文综述了用于清洁水和发电的各类CPTMs的研究进展。在阐述SIVG的基本原理和关键评价指标的基础上,重点评述了包括氧化石墨烯、碳纳米管、碳点和炭化生物质材料在内的各种CPTMs的光热和SIVG性能,并对水电联产的研究现状进行了分析,提出了应对挑战的策略,旨在为用于同时产生蒸汽和发电的多功能碳基光热材料的发展提供一些指导。
-
关键词:
- 光热材料 /
- 碳基材料 /
- 太阳能驱动的界面水蒸发 /
- 水电联产
Abstract: Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation. -
Figure 3. Preparation process diagrams and cross section SEM images of (a) DAGA[58] (Reprinted with permission by Elsevier Ltd., Copyright 2018) and (b) VA-GSM[54] (Reprinted with permission by American Chemical Society, Copyright 2017). Schematic diagram of (c) BHMG synthesis process and optical properties[59] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013) and (d) SIVG device and evaporation efficiency with rGO/AgNPs-MS[60] (Reprinted with permission by Elsevier, Copyright 2019)
Figure 4. (a) Photothermal conversion difference diagram of ordinary graphene foam and h-G foam[61] (Reprinted with permission by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2017); Schematic illustrations of (b) hydrogel-based antifouling solar evaporator and solar absorption of rGO-PVA hybrid hydrogel[62] (Reprinted with permission by RSC Publishing, Copyright 2008), (c) surface-modified hydrogel for solar vapor generation[63] (Reprinted with permission by American Chemical Society, Copyright 2019), and (d) preparation and structure of HGPA[64] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013).
Figure 5. Schematic diagrams of solar vapor generation using (a) F-Wood/CNTs membrane[65] (Reprinted with permission by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2017), (b) CNFAs[66] (Reprinted with permission by WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, Copyright 2020), (c) PTFE/CNT hollow fiber arrays[67] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013), and (d) SWCNT/gelatin membrane[68] (Reprinted with permission by Elsevier Ltd., Copyright 2019)
Figure 6. Schematic diagrams of solar vapor generation using (a) CNFs@CDs[74] (Reprinted with permission by Elsevier Inc., Copyright 2022), (b) C-CDSA[75] (Reprinted with permission by Elsevier Ltd., Weinheim, Copyright 2021), (c) CDs@Wood hollow fiber arrays[76] (Reprinted with permission by Elsevier Ltd., Copyright 2019), and (d) MnCDs@PPy[77] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013).
Figure 7. (a) Preparation flow chart and photothermal properties of CNTs-CH composite cellulose hydrogel[78] (Reprinted with permission by Elsevier B.V., Copyright 2023). (b) Graphic description and performance of wood-mimetic cellulose composite evaporator[79] (Reprinted with permission by Elsevier Ltd., Copyright 2023). (c) The synthesis diagram and evaporation performance of LC@LCG evaporator[80] (Reprinted with permission by Wiley-VCH GmbH, Copyright 2022).
Figure 8. (a) Digital photos and SEM images of wood solar evaporator[81] (Reprinted with permission by Elsevier Inc., Copyright 2017). Schematic of biomass derived carbon-based SIVG systems: (b) TCT-wood[83] (Reprinted with permission by Elsevier B.V., Copyright 2020), (c) mushroom[85] (Reprinted with permission by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Copyright 2017), and (d) c-corncob[88] (Reprinted with permission by Elsevier Ltd., Copyright 2021).
Figure 9. (a) Schematic diagrams of the cogenerator based on TEG for electricity and water[99] (Reprinted with permission by The Royal Society of Chemistry, Copyright 2022). (b) Performance of simultaneous desalination power generation device based on GONRs-M paper[100] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013)
Figure 10. Schematic diagrams of (a) an open TEC enabled by interfacial evaporation[104] (Reprinted with permission by Royal Society of Chemistry, Copyright 2013), (b) preparation of straw fiber aerogel and power-voltage curve of the TEC[105] (Reprinted with permission by the Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd., Copyright 2022), and (c) the hybrid system for solar salinity power extraction[109] (Reprinted with permission by Royal Society of Chemistry, Copyright 2008)
-
[1] Gao Y F, Wang Y, Zhou D, et al. Permselective graphene-based membranes and their applications in seawater desalination[J]. New Carbon Materials,2022,37(4):625-640. doi: 10.1016/S1872-5805(22)60618-8 [2] Tarus B K, Jande Y A C, Njau K N. Electrospun carbon nanofibers for use in the capacitive desalination of water[J]. New Carbon Materials,2022,37(6):1066-1084. doi: 10.1016/S1872-5805(22)60645-0 [3] Hu Z, Wang J, Ma X, et al. A critical review on semitransparent organic solar cells[J]. Nano Energy, 2020, 78. [4] Mavlonov A, Razykov T, Raziq F, et al. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells[J]. Solar Energy,2020,201:227-246. doi: 10.1016/j.solener.2020.03.009 [5] Gao M M, Peh C K, Meng F L, et al. Photothermal membrane distillation toward solar water production[J]. Small Methods, 2021, 5(5). [6] Okampo E J, Nwulu N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2021, 140. [7] Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7 [8] Anis S F, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review[J]. Desalination,2019,452:159-195. doi: 10.1016/j.desal.2018.11.006 [9] Miller S, Shemer H, Semiat R. Energy and environmental issues in desalination[J]. Desalination,2015,366:2-8. doi: 10.1016/j.desal.2014.11.034 [10] Panagopoulos A, Haralambous K J. Environmental impacts of desalination and brine treatment-challenges and mitigation measures[J]. Mar Pollut Bull,2020,161(Pt B):111773. [11] Guo M X, Wu J B, Li F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. doi: 10.1016/S1872-5805(20)60501-7 [12] Zhu L, Gao M, Peh C K N, et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications[J]. Nano Energy,2019,57:507-518. doi: 10.1016/j.nanoen.2018.12.046 [13] Yu S, Gu Y, Chao X, et al. Recent advances in interfacial solar vapor generation: clean water production and beyond[J]. Journal of Materials Chemistry A,2023,11(12):5978-6015. doi: 10.1039/D2TA10083E [14] Gao C, Zhou B, Li J, et al. Reversed vapor generation with Janus fabric evaporator and comprehensive thermal management for efficient interfacial solar distillation[J]. Chemical Engineering Journal,2023,463:142002. doi: 10.1016/j.cej.2023.142002 [15] Huang Q C, Liang X C, Yan C Y, et al. Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges[J]. Applied Energy, 2021, 283. [16] Meng F T, Ju B Z, Zhang S F, et al. Nano/microstructured materials for solar-driven interfacial evaporators towards water purification[J]. Journal of Materials Chemistry A,2021,9(24):13746-13769. doi: 10.1039/D1TA02202D [17] Liu T Y, Li Y. Plasmonic solar desalination[J]. Nature Photonics,2016,10(6):361-362. doi: 10.1038/nphoton.2016.97 [18] Jia C C, Li X X, Xin N, et al. Interface-engineered plasmonics in metal/semiconductor heterostructures[J]. Advanced Energy Materials, 2016, 6(17). [19] Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials,2018,8(4):1701028. doi: 10.1002/aenm.201701028 [20] Wang J, Li Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1603730. doi: 10.1002/adma.201603730 [21] Zhang L, Mu L, Zhou Q, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research,2020,170:115367. doi: 10.1016/j.watres.2019.115367 [22] Li K R, Chang T H, Li Z P, et al. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials,2019,9(34):1901687. doi: 10.1002/aenm.201901687 [23] Chen G, Sun J, Peng Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation[J]. Advanced Materials,2020,32(29):e1908537. doi: 10.1002/adma.201908537 [24] Ma Q, Yin P, Zhao M, et al. MOF-based hierarchical structures for solar-thermal clean water production[J]. Advanced Materials,2019,31(17):e1808249. doi: 10.1002/adma.201808249 [25] Wang T Y, Huang H B, Li H L, et al. Carbon materials for solar-powered seawater desalination[J]. New Carbon Materials,2021,36(4):683-701. doi: 10.1016/S1872-5805(21)60066-5 [26] He W, Zhou L, Wang M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-1483. doi: 10.1016/j.scib.2021.02.014 [27] Li Y, Shi Y, Wang H, et al. Recent advances in carbon‐based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective[J]. Carbon Energy, 2023: e331. [28] Fang S, Chu W, Tan J, et al. The mechanism for solar irradiation enhanced evaporation and electricity generation[J]. Nano Energy,2022,101:107605. doi: 10.1016/j.nanoen.2022.107605 [29] Dotan H, Kfir O, Sharlin E, et al. Resonant light trapping in ultrathin films for water splitting[J]. Nature Materials,2013,12(2):158-164. doi: 10.1038/nmat3477 [30] Zhu L L, Gao M M, Peh C K N, et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons,2018,5(3):323-343. doi: 10.1039/C7MH01064H [31] Xu Z R, Li Z D, Jiang Y H, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A,2020,8(48):25571-25600. doi: 10.1039/D0TA08869B [32] Liu X, Mishra D D, Wang X, et al. Towards highly efficient solar-driven interfacial evaporation for desalination[J]. Journal of Materials Chemistry A,2020,8(35):17907-17937. doi: 10.1039/C9TA12612K [33] Shang W, Deng T. Solar steam generation: Steam by thermal concentration[J]. Nature Energy,2016,1(9):16133. doi: 10.1038/nenergy.2016.133 [34] Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets[J]. Nano Energy,2017,41:269-284. doi: 10.1016/j.nanoen.2017.09.005 [35] Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization[J]. Nature Communication,2014,5:4449. doi: 10.1038/ncomms5449 [36] Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy,2015,17:290-301. doi: 10.1016/j.nanoen.2015.08.021 [37] Liu Z, Song H, Ji D, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenges,2017,1(2):1600003. doi: 10.1002/gch2.201600003 [38] Xiao X D, Miao L, Xu G, et al. A facile process to prepare copper oxide thin films as solar selective absorbers[J]. Applied Surface Science,2011,257(24):10729-10736. doi: 10.1016/j.apsusc.2011.07.088 [39] Zhou J H, Gu Y F, Liu P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials,2019,29(50):1903255. [40] Ulset E T, Kosinski P, Zabednova Y, et al. Photothermal boiling in aqueous nanofluids[J]. Nano Energy,2018,50:339-346. doi: 10.1016/j.nanoen.2018.05.050 [41] Wu L, Dong Z, Cai Z, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communication,2020,11(1):521. doi: 10.1038/s41467-020-14366-1 [42] Li X, Li J, Lu J, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule,2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004 [43] Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864. [44] Dao V D, Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges,2018,2(2):1700094. doi: 10.1002/gch2.201700094 [45] Hu X, Xu W, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials,2017,29(5):1604031. doi: 10.1002/adma.201604031 [46] Wang Y C, Wang C Z, Song X J, et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A,2018,6(3):963-971. doi: 10.1039/C7TA08972D [47] Shi L, Wang Y, Zhang L, et al. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A,2017,5(31):16212-16219. doi: 10.1039/C6TA09810J [48] Dong S Y, Zhao Y L, Yang J Y, et al. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation[J]. Applied Catalysis B: Environmental,2021,291:120127. doi: 10.1016/j.apcatb.2021.120127 [49] Tao F J, Zhang Y L, Wang B B, et al. Graphite powder/semipermeable collodion membrane composite for water evaporation[J]. Solar Energy Materials and Solar Cells,2018,180:34-45. doi: 10.1016/j.solmat.2018.02.014 [50] Dao V D, Vu N H, Dang H L T, et al. Recent advances and challenges for water evaporation-induced electricity toward applications[J]. Nano Energy,2021,85:105979. doi: 10.1016/j.nanoen.2021.105979 [51] Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environmental Science: Nano,2018,5(5):1078-1089. doi: 10.1039/C8EN00156A [52] Fillet R, Nicolas V, Fierro V, et al. A review of natural materials for solar evaporation[J]. Solar Energy Materials and Solar Cells,2021,219:110814. doi: 10.1016/j.solmat.2020.110814 [53] Lin K T, Lin H, Yang T, et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion[J]. Nature Communication,2020,11(1):1389. doi: 10.1038/s41467-020-15116-z [54] Zhang P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965 [55] Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(49):13953-13958. [56] Xi S, Wang L, Xie H, et al. Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage[J]. ACS Nano,2022,16(3):3843-3851. doi: 10.1021/acsnano.1c08581 [57] Qi G Q, Yang J, Bao R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Research,2017,10(3):802-813. doi: 10.1007/s12274-016-1333-1 [58] Zhang P P, Liao Q H, Zhang T, et al. High throughput of clean water excluding ions, organic media, and bacteria from defect-abundant graphene aerogel under sunlight[J]. Nano Energy,2018,46:415-422. doi: 10.1016/j.nanoen.2018.02.018 [59] Meng S, Zhao X, Tang C Y, et al. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation[J]. Journal of Materials Chemistry A,2020,8(5):2701-2711. doi: 10.1039/C9TA12802F [60] Wang K, Wang D Y, Wang M Z, et al. Functional photothermal sponges for efficient solar steam generation and accelerated cleaning of viscous crude-oil spill[J]. Solar Energy Materials and Solar Cells,2020,204:110203. doi: 10.1016/j.solmat.2019.110203 [61] Ren H, Tang M, Guan B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials,2017,29(38):1702590. doi: 10.1002/adma.201702590 [62] Zhou X Y, Zhao F, Guo Y H, et al. A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy & Environmental Science,2018,11(8):1985-1992. [63] Guo Y, Zhao F, Zhou X, et al. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J]. Nano Letters,2019,19(4):2530-2536. doi: 10.1021/acs.nanolett.9b00252 [64] Zhang P P, Liao Q H, Yao H Z, et al. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun[J]. Journal of Materials Chemistry A,2018,6(31):15303-15309. doi: 10.1039/C8TA05412F [65] Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device[J]. Advanced Materials,2017,29(30):1701756. doi: 10.1002/adma.201701756 [66] Dong X, Cao L, Si Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Advanced Materials,2020,32(34):e1908269. doi: 10.1002/adma.201908269 [67] Li T, Fang Q, Wang J, et al. Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays[J]. Journal of Materials Chemistry A,2021,9(1):390-399. doi: 10.1039/D0TA09368H [68] Ma X, Fang W Z, Ying W, et al. A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation[J]. Applied Materials Today,2020,18:100459. doi: 10.1016/j.apmt.2019.100459 [69] Hu G, Cao Y, Huang M, et al. Salt-resistant carbon nanotubes/polyvinyl alcohol hybrid gels with tunable water transport for high-efficiency and long-term solar steam generation[J]. Energy Technology,2019,8(1):1900721. [70] Cai T T, Liu B, Pang E N, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0 [71] Nhat Hang N T, Van Canh N, Hoa N H, et al. Co-assembled hybrid of carbon nanodots and molecular fluorophores for efficient solar-driven water evaporation[J]. Carbon,2022,199:462-468. doi: 10.1016/j.carbon.2022.07.063 [72] Li M, Yang M, Liu B, et al. Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion[J]. Chemical Engineering Journal,2022,431:134245. doi: 10.1016/j.cej.2021.134245 [73] Zhou H, Xue C, Chang Q, et al. Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification[J]. Chemical Engineering Journal,2021,421:129822. doi: 10.1016/j.cej.2021.129822 [74] Wang Y, Chang Q, Xue C, et al. Chemical treatment of biomass wastes as carbon dot carriers for solar-driven water purification[J]. Journal of Colloid and Interface Science,2022,621:33-40. doi: 10.1016/j.jcis.2022.04.061 [75] Xu X, Chang Q, Xue C, et al. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation[J]. Journal of Materials Chemistry A,2022,10(21):11712-11720. doi: 10.1039/D2TA02302D [76] Hou Q, Xue C, Li N, et al. Self-assembly carbon dots for powerful solar water evaporation[J]. Carbon,2019,149:556-563. doi: 10.1016/j.carbon.2019.04.083 [77] Irshad M S, Wang X, Abbas A, et al. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection[J]. Carbon,2021,176:313-326. doi: 10.1016/j.carbon.2021.01.140 [78] Wang X, Sun Y, Zhao G Y, et al. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation[J]. New Carbon Materials,2023,38(1):162-172. doi: 10.1016/S1872-5805(22)60621-8 [79] Chen L, He S, Huang W, et al. 3D-printed tripodal porous wood-mimetic cellulosic composite evaporator for salt-free water desalination[J]. Composites Part B: Engineering,2023,263:110830. doi: 10.1016/j.compositesb.2023.110830 [80] Lin X L, Wang P, Hong R T, et al. Fully lignocellulosic biomass-based double-layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials,2022,32(51):2209262. doi: 10.1002/adfm.202209262 [81] Jia C, Li Y J, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011 [82] Li T, Liu H, Zhao X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134 [83] Hou Q, Zhou H Y, Zhang W, et al. Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood[J]. Science of the Total Environment, 2021, 759. [84] Chen X, He S M, Falinski M M, et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators[J]. Energy & Environmental Science,2021,14(10):5347-5357. [85] Xu N, Hu X, Xu W, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1606762. doi: 10.1002/adma.201606762 [86] Fang Q, Li T, Chen Z, et al. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS Appllied Material & Interfaces,2019,11(11):10672-10679. doi: 10.1021/acsami.9b00291 [87] Feng Q, Bu X T, Wan Z M, et al. An efficient torrefaction Bamboo-based evaporator in interfacial solar steam generation[J]. Solar Energy,2021,230:1095-1105. doi: 10.1016/j.solener.2021.11.027 [88] Sun Y, Zhao Z B, Zhao G Y, et al. High performance carbonized corncob-based 3D solar vapor steam generator enhanced by environmental energy[J]. Carbon,2021,179:337-347. doi: 10.1016/j.carbon.2021.04.037 [89] Weinstein L A, McEnaney K, Strobach E, et al. A hybrid electric and thermal solar receiver[J]. Joule,2018,2(5):962-975. doi: 10.1016/j.joule.2018.02.009 [90] Cheng P, Ziegler M, Ripka V, et al. Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation[J]. ACS Appllied Material & Interfaces,2022,14(14):16894-16900. doi: 10.1021/acsami.2c01181 [91] Liu G, Yu F, Irshad M S, et al. Biomass-inspired solar evaporator for simultaneous steam and power generation enhanced by thermal-electric effect[J]. Energy Technology, 2022, 10(12). [92] Gui J, Li C, Cao Y, et al. Hybrid solar evaporation system for water and electricity co-generation: Comprehensive utilization of solar and water energy[J]. Nano Energy,2023,107:108155. doi: 10.1016/j.nanoen.2022.108155 [93] Gu X, Fan C, Sun Y. Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review[J]. Chemical Engineering Journal,2023,460:141716. doi: 10.1016/j.cej.2023.141716 [94] Liu G H, Chen T, Xu J L, et al. Solar evaporation for simultaneous steam and power generation[J]. Journal of Materials Chemistry A,2020,8(2):513-531. doi: 10.1039/C9TA12211G [95] Jaziri N, Boughamoura A, Muller J, et al. A comprehensive review of thermoelectric generators: technologies and common applications[J]. Energy Reports,2020,6:264-287. [96] Beretta D, Neophytou N, Hodges J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials Science and Engineering:R:Reports,2019,138:210-255. [97] Kraemer D, Poudel B, Feng H P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration[J]. Nature Materials,2011,10(7):532-538. doi: 10.1038/nmat3013 [98] Lee J H, Kim J, Kim T Y, et al. All-in-one energy harvesting and storage devices[J]. Journal of Materials Chemistry A,2016,4(21):7983-7999. doi: 10.1039/C6TA01229A [99] Mu X J, Zhou J H, Wang P F, et al. A robust starch-polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity-freshwater cogeneration[J]. Energy & Environmental Science,2022,15(8):3388-3399. [100] Sun Y, Zhao Z, Zhao G, et al. Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers[J]. Journal of Materials Chemistry A,2022,10(16):9184-9194. doi: 10.1039/D2TA00375A [101] Dupont M F, MacFarlane D R, Pringle J M. Thermo-electrochemical cells for waste heat harvesting-progress and perspectives[J]. Chemical Communications,2017,53(47):6288-6302. doi: 10.1039/C7CC02160G [102] Hu R, Cola B, Haram N, et al. Harvesting waste thermal energy using carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters,2010,10:838-46. doi: 10.1021/nl903267n [103] Lee S W, Yang Y, Lee H W, et al. An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature Communications, 2014, 5. [104] Shen Q C, Ning Z Y, Fu B W, et al. An open thermo-electrochemical cell enabled by interfacial evaporation[J]. Journal of Materials Chemistry A,2019,7(11):6514-6521. doi: 10.1039/C8TA10190F [105] Zhao J Y, Wu X, Yu H M, et al. Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems[J]. EcoMat,2023,5:e12302. doi: 10.1002/eom2.12302 [106] Yip N Y, Brogioli D, Hamelers H V M, et al. Salinity gradients for sustainable energy: primer, progress, and prospects[J]. Environmental Science & Technology,2016,50(22):12072-12094. [107] La Mantia F, Pasta M, Deshazer H D, et al. Batteries for efficient energy extraction from a water salinity difference[J]. Nano Letters,2011,11(4):1810-1813. doi: 10.1021/nl200500s [108] Jia Z J, Wang B G, Song S Q, et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient[J]. Renewable and Sustainable Energy Reviews,2014,31:91-100. doi: 10.1016/j.rser.2013.11.049 [109] Yang P H, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science,2017,10(9):1923-1927. -