车航欣, 高宇飞, 杨家辉, 洪崧, 郝磊端, 徐亮, SanaTaimoor, AlexW. Robertson, 孙振宇. 铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池[J]. 新型炭材料, 2024, 39(1): 131-141. DOI: 10.1016/S1872-5805(24)60837-1
引用本文: 车航欣, 高宇飞, 杨家辉, 洪崧, 郝磊端, 徐亮, SanaTaimoor, AlexW. Robertson, 孙振宇. 铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池[J]. 新型炭材料, 2024, 39(1): 131-141. DOI: 10.1016/S1872-5805(24)60837-1
CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries[J]. New Carbon Mater., 2024, 39(1): 131-141. DOI: 10.1016/S1872-5805(24)60837-1
Citation: CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries[J]. New Carbon Mater., 2024, 39(1): 131-141. DOI: 10.1016/S1872-5805(24)60837-1

铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池

Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries

  • 摘要: 铁铬氧化还原液流电池 (ICRFB) 是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr3+/Cr2+电化学活性低、负极易产生严重的析氢反应 (HER) 等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡 (GF) 表面沉积了非晶态铋 (Bi) 纳米颗粒 (NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的Bi NPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe2+/Fe3+和Cr3+/Cr2+的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm−2电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。

     

    Abstract: Iron-chromium redox flow batteries (ICRFBs) use abundant and inexpensive chromium and iron as the active substances in the electrolyte and have great potential as a cost-effective and large-scale energy storage system. However, they are still plagued by several issues, such as the low electrochemical activity of Cr3+/Cr2+ and the occurrence of the undesired hydrogen evolution reaction (HER). We report the synthesis of amorphous bismuth (Bi) nanoparticles (NPs) immobilized on N-doped graphite felts (GFs) by a combined self-polymerization and wet-chemistry reduction strategy followed by annealing, which are used as the negative electrodes for ICRFBs. The resulting Bi NPs react with H+ to form intermediates and greatly inhibit the parasitic HER. In addition, the combined effect of Bi and N dopants on the surface of GF dramatically increases the electrochemical activity of Fe2+/Fe3+ and Cr3+/Cr2+, reduces the charge transfer resistance, and increases the mass transfer rate compared to plain GF. At the optimum Bi/N ratio of 2, a high coulombic efficiency of up to 97.7% is maintained even for 25 cycles at different current densities, the energy efficiency reaches 85.8% at 60.0 mA cm−2, exceeding many other reported materials, and the capacity reaches 862.7 mAh L−1 after 100 cycles, which is about 5.3 times that of bare GF.

     

/

返回文章
返回