留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces

HE Jing-zong CHEN Shi MA Zheng-kun LU Yong-gen WU Qi-lin

何敬宗, 陈师, 马政坤, 吕永根, 吴琪琳. CNT/CF/环氧树脂界面的原位热拉曼成像与应力分析. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60874-7
引用本文: 何敬宗, 陈师, 马政坤, 吕永根, 吴琪琳. CNT/CF/环氧树脂界面的原位热拉曼成像与应力分析. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60874-7
HE Jing-zong, CHEN Shi, MA Zheng-kun, LU Yong-gen, WU Qi-lin. In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60874-7
Citation: HE Jing-zong, CHEN Shi, MA Zheng-kun, LU Yong-gen, WU Qi-lin. In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60874-7

CNT/CF/环氧树脂界面的原位热拉曼成像与应力分析

doi: 10.1016/S1872-5805(24)60874-7
基金项目: 国家自然科学基金(52090033/52090030)、高层次拔尖创新人才专项基金(CUSF-DH-T-2024002)
详细信息
    通讯作者:

    吕永根,教授. E-mail:yglu@dhu.edu.cn

    吴琪琳,教授. E-mail:wql@dhu.edu.cn

  • 中图分类号: TQ152.1+1

In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces

Funds: This work was financially supported by the major project of the National Natural Science Foundation of China (52090033/52090030) and the Fundamental Research Funds for the Central Universities (CUSF-DH-T-2024002)
More Information
  • 摘要: 研究纤维增强复合材料的界面行为和内部热应力分布对于评估其性能和可靠性至关重要。我们采用电泳沉积(EPD)技术制造了碳纳米管/炭纤维(CF)混合纤维。通过将CNT作为拉曼传感介质(CNTR)分散在环氧树脂(epoxy)中,对CF/epoxy和CNT/CF/epoxy复合材料的界面性能进行了统计调查和比较。通过捕捉不同温度下 CNTR在环氧树脂中的G'带位置分布,高度模拟了相关的局部热应力变化。研究发现,随着温度的升高,G'波段向较低的波段位置移动,在100 °C时达到2.43 cm−1的最大差异。详细研究了CNT/CF与基体之间的界面结合以及热处理过程(100 °C)中的应力分布和变化。这对利用原位热拉曼成像技术研究纤维增强复合材料中的热应力具有重要的参考价值。
  • Figure  1.  (a) Two roles CNT played and (b) diagrammatic sketches for three samples

    Figure  2.  Diagrammatic sketches of in-situ Raman mapping under heating: (a) the specific heating program (b) the heat treatment device and Raman spectroscope and (c) the scanning area and the red point representing a Raman scan

    Figure  3.  Raman spectra of samples. (a) pristine CFs, (b) pristine CNTs, (c) CNTS-CF hybrid and (d) CNTR/epoxy composite without CFs. The surface morphology of each sample is given on the right

    Figure  4.  The Raman mapping images of the G' band at different temperatures. The inset is the corresponding histogram. (a) Sample 1 is a composite without CFs, (b) Sample 2 is a composite with pristine CFs and (c) Sample 3 is a composite with CNTs-CF hybrid. All samples are dispersed with CNTR.

    Figure  5.  G' band position distribution closest to CFs: (a) Sample 2 and (b) Sample 3

    Figure  6.  (a) Histogram of G' band position values, the black curve represents the Gaussian curve (Fig. 3b-1 as an example). Gaussian fitted curves at different temperatures of (b) Sample 1, (c) Sample 2 and (d) Sample 3

    Figure  7.  (a) XC and (b) FWHM of a Gaussian fit peak to the histograms at different temperatures

    Figure  8.  SEM images of the cross-section of CF reinforced composite. (a, b) Sample 2 and (c, d) Sample 3

    Figure  9.  Schematic diagram of CF reinforced composite interface of (a) CF/epoxy and (b) CNTs-CF/epoxy

    Table  1.   The relationship between stress and G' band position

    G' band position D>2660 cm−1 D=2660 cm−1 D<2660 cm−1
    Difference value Positive 0 Negative
    Stress type Compression 0 Tension
    下载: 导出CSV

    Table  2.   ΔXC values of three samples at different temperatures

    Temperature/°C ΔXC/cm−1
    Sample 1 Sample 2 Sample 3
    20 +1.94 −0.45 +0.05
    40 +1.19 +2.04 −0.55
    60 +0.46 −1.37 −0.41
    80 +2.03 −0.62 −1.64
    100 −0.01 −1.48 −2.43
    下载: 导出CSV
  • [1] Su Y, Wu H, Qiu L, et al. Annular pupil confocal Brillouin–Raman microscopy for high spectral resolution multi-information mapping[J]. Nanophotonics,2023,12(18):3535-3544. doi: 10.1515/nanoph-2023-0139
    [2] Dyachkova T P, Khan Y A, Burakova E A, et al. Characteristics of Epoxy Composites Containing Carbon Nanotubes/Graphene Mixtures[J]. Polymers,2023,15(6):1476. doi: 10.3390/polym15061476
    [3] Bobenko N, Egorushkin V, Ponomarev A. Hysteresis in Heat Capacity of MWCNTs Caused by Interface Behavior[J]. Nanomaterials,2022,12(18):3139. doi: 10.3390/nano12183139
    [4] Aoki A, Ogasawara T, Aoki T, et al. Raman spectroscopy used for estimating the effective elastic modulus of carbon nanotubes in aligned multi-walled carbon nanotubes/ epoxy composites under tensile loading[J]. Composites Part A: Applied Science and Manufacturing,2023,167:107448. doi: 10.1016/j.compositesa.2023.107448
    [5] Gao Z, Ji Z, Zhang L, et al. Optimizing the growth of vertically aligned carbon nanotubes by literature mining and high-throughput experiments[J]. New Carbon Materials,2023,38(5):887-897. doi: 10.1016/S1872-5805(23)60775-9
    [6] Takahashi T, Tsubo S, Inoue K, et al. Effect of dispersibility of carbon nanotubes on the hardness and thermal properties of polyphenylene sulphide/carbon nanotube composites obtained using solution mixing and melt blending methods[J]. Materials Science and Engineering: B,2023,295:116579. doi: 10.1016/j.mseb.2023.116579
    [7] Santos A, Amorim L, Nunes J P, et al. Carbon nanotubes based multi-directional strain sensor[J]. Materials Science and Engineering: B,2022,285:115937. doi: 10.1016/j.mseb.2022.115937
    [8] Zhang L, Li X, Wang P, et al. Increasing the interlaminar fracture toughness and thermal conductivity of carbon fiber/epoxy composites interleaved with carbon nanotube/polyimide composite films[J]. New Carbon Materials,2023,38(3):566-573. doi: 10.1016/S1872-5805(23)60738-3
    [9] Laurenzi S, Botti S, Rufoloni A, et al. Mapping the residual strain of carbon nanotubes in DWCNT/epoxy nanocomposites after tensile load using Raman microscopy[J]. Composites Communications,2020,21:100424. doi: 10.1016/j.coco.2020.100424
    [10] Rafiee R, Ghorbanhosseini A. Predicting mechanical properties of fuzzy fiber reinforced composites: radially grown carbon nanotubes on the carbon fiber[J]. International Journal of Mechanics and Materials in Design,2016,14(1):37-50.
    [11] Malekimoghadam R, Icardi U, Hosseini S A. The influence of carbon nanotube coated-carbon fibers on thermal residual stresses of Multi-Scale hybrid composites: Analytical approach[J]. International Journal of Solids and Structures,2021,233:111212. doi: 10.1016/j.ijsolstr.2021.111212
    [12] Yao Z, Xia A, Wang D, et al. Low temperature multi-catalytic growth and growth mechanism of carbon nanotubes on carbon fiber surfaces[J]. Nanotechnology,2023,35(1):015701.
    [13] Jiang H, Wang Y, Wang C, et al. Effect of electrochemical anodization and growth time on continuous growth of carbon nanotubes on carbon fiber surface[J]. Ceramics International,2022,48(20):29695-29704. doi: 10.1016/j.ceramint.2022.06.227
    [14] Zhang H, He Q, Yu H, et al. A Bioinspired Polymer-Based Composite Displaying Both Strong Adhesion and Anisotropic Thermal Conductivity[J]. Advanced Functional Materials,2023,33(18):2211985. doi: 10.1002/adfm.202211985
    [15] Zhang F, Sun Y, Guo L, et al. Microstructural Welding Engineering of Carbon Nanotube/Polydimethylsiloxane Nanocomposites with Improved Interfacial Thermal Transport[J]. Advanced Functional Materials,2023,34(10):2311906.
    [16] Zhang F, Feng Y, Qin M, et al. Stress Controllability in Thermal and Electrical Conductivity of 3D Elastic Graphene‐Crosslinked Carbon Nanotube Sponge/Polyimide Nanocomposite[J]. Advanced Functional Materials,2019,29(25):1901383. doi: 10.1002/adfm.201901383
    [17] Cai Y, Yu H, Chen C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks[J]. Carbon,2022,196:902-912. doi: 10.1016/j.carbon.2022.05.050
    [18] Jia L, Wu Q, Chen H. Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites[J]. New Carbon Materials,2023,38(6):1135-1142. doi: 10.1016/S1872-5805(23)60712-7
    [19] Ran M, Jia L, Cheng C, et al. Temperature-variable Raman scattering study on micromechanical properties of the carbon fiber reinforced polyimide composite film[J]. New Carbon Materials,2019,34(1):105-109. doi: 10.1016/S1872-5805(19)60004-1
    [20] Xu F, Long J, Xue Y, et al. Polarization Raman spectroscopy characterizations of microscopic stress in 3D angle-interlock woven composites during thermo-oxidative ageing[J]. Composites Science and Technology,2024,247:110423. doi: 10.1016/j.compscitech.2023.110423
    [21] Li Z, Deng L, Kinloch I A, et al. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres[J]. Progress in Materials Science,2023,135:101089. doi: 10.1016/j.pmatsci.2023.101089
    [22] Abiko K, Kato Y, Hohjo H, et al. Raman imaging of residual stress distribution in epoxy resin and metal interface[J]. Journal of Raman Spectroscopy,2019,51(1):193-200.
    [23] Morgan J J, Craciun M F, Eichhorn S J. Quantification of stress transfer in a model cellulose nanocrystal/graphene bilayer using Raman spectroscopy[J]. Composites Science and Technology,2019,177:34-40. doi: 10.1016/j.compscitech.2019.04.011
    [24] Fang C, Gopalan S, Zhang X, et al. Raman imaging to identify microplastics released from toothbrushes: algorithms and particle analysis[J]. Environmental Pollution,2023,337:122510. doi: 10.1016/j.envpol.2023.122510
    [25] Stubrov Y, Nikolenko A, Gubanov V, et al. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes[J]. Nanoscale Research Letters,2016,11(1):2. doi: 10.1186/s11671-015-1213-8
    [26] Lourie O, Wagner H D. Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy[J]. Journal of Materials Research,1998,13(9):2418-2422. doi: 10.1557/JMR.1998.0336
    [27] Meng Q, Xu B, Huang C, et al. Topology optimization of thermo‐elastic structures considering stiffness, strength, and temperature constraints over a wide range of temperatures[J]. International Journal for Numerical Methods in Engineering,2022,123(7):1627-1653. doi: 10.1002/nme.6909
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 录用日期:  2024-07-01
  • 修回日期:  2024-06-28
  • 网络出版日期:  2024-07-02

目录

    /

    返回文章
    返回