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基于神经网络的炭气凝胶孔结构的预测与优化模型研究
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摘摇 要:摇 如何控制和预测孔结构是炭气凝胶研究的重要课题。 然而,由于耗时耗财,导致实验方法研究控制和预测孔结构

成为难题。 本文提出一种基于神经网络的炭气凝胶孔结构的预测与优化模型,并采用遗传算法设计和优化模型,对六种典型

训练算法模型性能进行比较分析。 利用该模型对孔径和吸附容量进行预测,两者的预测相关系数分别为 0. 992 和 0. 981,预
测均方根误差分别为 0. 077 和 0. 054。 经测试,该模型与实验研究的结果相符,并有效的应用于预测和控制炭气凝胶实验

参数。
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Abstract: 摇 An intelligent simulation method for predicting and optimizing the pore structure of carbon aerogels is proposed by
using an artificial neural network (ANN) algorithm. The ANN model has been optimized based on an improved genetic algorithm
from six typical training algorithms. The volumes and diameters of pores in the simulated samples are predicted by the optimized
ANN model, which shows correlation coefficients R2 of 0. 992 and 0. 981 and root鄄mean鄄square prediction errors (RMSPE) of
0. 077 and 0. 054 between the predicted and experimental values for the volumes and diameters of pores, respectively. The proposed
model is expected to have practical applications in the pore structure control of carbon aerogels.
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1摇 Introduction
Carbon aerogels have high ratios of surface or in鄄

terface atoms owing to their particles in nanometer
scale that form them[1] . Compared with conventional
granular materials, carbon aerogels have a series of
excellent physical and chemical properties such as low
densities, high electrical conductivity, high special
surface area, biocompatibility, and anticorrosion by
acid and base[2,3] . It is considered as a promising ma鄄
terial for various electrochemical applications, catalyst
supports, adsorbents, and chromatography pack鄄
ings[4,5,6] .

In this study, a new type of carbon aerogels was

prepared by sol鄄gel polymerization method using phe鄄
nol, melamine and formaldehyde as raw materials.
Pore structure of carbon aerogels is essential to carbon
aerogels because it will directly affect their perform鄄
ance. However, it is difficult to control practically
pore structure parameters of carbon aerogels due to the
constraints of time and cost.

In recent years, interest using artificial neural
networks (ANNs) as a tool in material technology
has increased. ANNs have been successfully used in
several types of material applications like analysis,
classifications, predictions or control and others[7,8] .

ANNs are mathematical models that have the ca鄄
pabilities to relate input to output parameters. They
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can learn from examples by iteration without requiring
a prior knowledge of the relationships between process
parameters and properties of materials[9] .

The neural network is determined by the architec鄄
ture, training algorithms and learning rule. The most
often used ANN for material applications is a fully
connected and supervised network with a back propa鄄
gation learning rule. The neural network architecture
is designed by means of a trial鄄and鄄error process with
a human intervention. Although there are some stud鄄
ies carried out on the automatic design of architec鄄
tures[10], how to design an appropriate architecture
systematically and autonomously remains a challeng鄄
ing problem. The genetic algorithm (GA) is quite ef鄄
fective in solving optimization problems owing to its
inherent property of implicit parallelism[11] . In this
paper, we have established an optimal structure of
ANN by GA. Plumb et al. [12] have shown that a
proper selection of the training function has a signifi鄄
cant effect on the predictive ability of a network.
Therefore, one of the aims of this paper is to obtain
an optimized ANN to control and predict the pore
structure for carbon aerogels through selecting training
algorithms. To do this, six training algorithms have
been evaluated.

Performances of ANN have been optimized by
varying the numbers of neurons in the hidden layer,
optimizing the architecture of neural network and se鄄
lecting a proper training algorithm. Then, the numeri鄄
cal simulation results from the optimal controlling and
predicting model are compared with experimental
ones. The purpose of this paper is to investigate the
behaviors of pore structure for carbon aerogels and es鄄
tablish controlling and predicting model using the neu鄄
ral network method. The flowchart of this study is
shown in Fig. 1.

2摇 Experimental
2. 1摇 Preparation and experimental design

In the present experiments, the total reactant
concentration is 20% , and the molar ratio of phenol
and m鄄cresol is 1 颐 2. The catalyst concentration is
100 mmol / L. We investigate the effect of the reactant
concentration, the molar ratio of phenol and m鄄cresol
in the solution on pore structure of carbon aerogels.
The reactants are mixed in propyl alcohol to form
transparent solutions. The solutions are poured into
sealed glass ampoules (8 cm伊2 cm, internal diame鄄
ter, each filled with 20 mL solution) and heated at
90 益 for 48 h in a water bath. Then, the black or鄄
ganic gels are moved into a pressure vessel and super鄄
critically dried at 270 益 and 8 MPa. Finally, with a

heating rate of 5 益 / min, the carbon aerogels are
formed by pyrolysis of the organic aerogels in a hori鄄
zontal tube furnace at 800 益 for 3 h under nitrogen
protection. As a comparison, phenol鄄furfural (m鄄C /
P=0) and m鄄cresol鄄furfural (m鄄C / P =肄 ) are poly鄄
merized in 1鄄propanol under the same conditions[13] .

Fig. 1摇 Flowchart of this study.

摇 摇 Samples are named MP / RC / CC in accordance
with preparation conditions, in which MP is mela鄄
mine / phenol molar ratio, RC is the concentration of
the reactants and CC is the catalyst concentration.
Under certain conditions ( solvent exchange, super鄄
critical drying and pyrolysis), the influences of dif鄄
ferent reaction temperatures, reaction times, various
melamine / phenol molar ratios (M/ P) on pore struc鄄
ture of carbon aerogels are studied.
2. 2摇 Analysis and characterization

Main analysis and characterization methods of
this paper are as follows:

Laser particle size analyzer. Particle size distri鄄
bution and average particle size were measured by a
laser particle size analyzer.

Nitrogen adsorption. Adsorption and desorption
isotherms of nitrogen were measured at 77 K using a
commercial adsorption apparatus (ASAP2020M, Mi鄄
cromeritics) . Samples were degassed at 200 益 under
vacuum for 12 h. The BET surface areas (SBET) were
analyzed by the Brunauer鄄Emmett鄄Teller ( BET )
method from the adsorption isotherm of nitrogen at p /
p0 from 0. 05 to 0. 2. Micropore volumes (Vmic), mi鄄
cropore surface areas (Smic), and external surface ar鄄
eas (Sext) were obtained by the t鄄plot method using
an adsorption branch of the isotherms. Mesopore size
distributions, mesopore volumes (Vmes) and average
pore diameters (Dp ) were obtained with the BJH
(Barrett鄄Johner鄄Halendar) model using the desorption
branch of the isotherms.

3摇 ANN description
摇 摇 An ANN concept, which is from artificial intelli鄄
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gence family, has been developed to model nonlinear
processes in many areas. An ANN is a parallel鄄dis鄄
tributed information processing system. It stores the
samples with distributed coding, thus forming a train鄄
able nonlinear system. The main idea of the neural
network resembles the functions of human brains. It is
self鄄adaptive to the environment so as to respond dif鄄
ferent inputs rationally[14] .

An overview of neural network algorithms was
provided by McCulloch[15] . A neuron as a unit with
process of stimulus and reaction is generalized in this
system. A set of training data for learning is per鄄
formed with weight ( connection strength), transfer
function and biases. In this study, a back鄄propagation
(BP) algorithm is used for the neural network, which
is simple from the viewpoint of structure and easy
analysis with mathematics. The back propagation neu鄄
ral network scheme, which has a great learning ability
in training and mapping the relations between inputs
and outputs, is the most commonly used network
models[16,17] . The basic structure of BP neural net鄄
work is shown in Fig. 2.

Fig. 2摇 Basic structure of BPNN.

摇 摇 The neuron shown in Fig. 2 can be classified in鄄
to three types, input, output and hidden neurons. In鄄
put neurons are the ones that receive input signal from
external sources. Output neurons are those that send
the signals to external sources. Neurons, which have
inputs and outputs, are called hidden neurons. There
are one or several nodal points in the output layer,
which generate output data.

In this network, each input value is connected to
each input neuron by the weight matrix. Usually, BP
neural network is represented by the following model
(Eq. (1)),

Nj =移WjiIi
Hj = f(Nj+B j)
Ok = f(移WkjHj+Bk

{
)

(1)

where Ii and Ok are input and output values, Hj

is the output of activation function of the jth neuron in
the hidden layer , Wji and Wkj are weights , f is the

transfer function and B j and Bk are biases.
The optimal ANN configuration is selected from

various ANN configurations based on their predictive
performance. Mean square prediction error (MSE)
defined as Eq. (2) is used to evaluate prediction ac鄄
curacy of the model:

MSE=移
N

k=1
(Ok-Tk) 2 / N (2)

where N is the number of prediction data, Tk is
the actual value of the kth experimental data and Ok is
the kth estimated value of the prediction model. MSE
is easily computed and it can give a precise descrip鄄
tion of the predictive performance of the network.

Also, the linear regression coefficient R2 between
the predicted values of the ANN model and the de鄄
sired output is used to evaluate the predictive ability
of the network.

MSE and R2 are frequently calculated until error
is acceptable. Finally, the test data are used to verify
the nonlinear relationship between the input and out鄄
put data sets. Steps of optimization procedure and
learning algorithm are listed in detail in Ref. [18] .

ANN is self鄄adaptive to the environment so as to
respond different inputs rationally. In other word, a
designed neural network can give a rapid response for
any given input. Some advantages of a neural net鄄
work are adoption, learning, generalization, easy to
implementation, and self鄄organization.

Implementation of a neural network needs a deci鄄
sion of two main features, the structure in other word
topology of the network and the type of learning algo鄄
rithm. In this article, the topology of the network is
optimized by an improved genetic algorithm. Six dif鄄
ferent training algorithms are tested by comparing pre鄄
dicting results.

4 摇 Methodology design of the neural
network
摇 摇 In this study, the neural network is used to pre鄄
dict diameters and volumes of pores in the MP / RC /
CC carbon aerogels. There are 24 experimental data
in training and test sets (Table 1) . Six different train鄄
ing algorithms are used to predict experimental
results.

A neural network is implemented with a three
layer feed鄄forward structure, an input layer, a hidden
layer and an output layer. The designed neural net鄄
work has 3 input and 2 output neurons as shown in
Fig. 3.
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Table 1摇 The experimental data used to form the training and test sets.

Samples
Input 1 of NN

M/ P

Input 2 of NN
Reactant content
(g / 100mL)

Input 3 of NN
Catalyst content

(mol / L)

Output 1 of NN

Pore diameter(nm)

Output 2 of NN
Volume adsorbed

(cm3 / g)
S(1) 0. 05 5 0. 02 10. 3 1. 5
S(2) 0. 05 10 0. 05 9. 5 1. 3
S(3) 0. 05 15 0. 1 7. 5 1. 1
S(4) 0. 05 20 0. 2 6. 9 0. 9
S(5) 0. 1 5 0. 02 8. 7 1. 4
S(6) 0. 1 10 0. 05 7. 6 1. 1
S(7) 0. 1 15 0. 1 5. 4 0. 75
S(8) 0. 1 20 0. 2 3. 8 0. 68
S(9) 0. 2 5 0. 02 14. 1 1. 9
S(10) 0. 2 10 0. 05 11. 2 1. 6
S(11) 0. 2 15 0. 1 8. 1 1. 0
S(12) 0. 2 20 0. 2 7. 3 0. 96
S(13) 0. 4 5 0. 02 8. 6 2. 1
S(14) 0. 4 10 0. 05 15. 3 1. 9
S(15) 0. 4 15 0. 1 11. 9 1. 6
S(16) 0. 4 20 0. 2 8. 1 0. 79
S(17) 0. 6 5 0. 02 20. 8 2. 6
S(18) 0. 6 10 0. 05 19. 2 2. 4
S(19) 0. 6 15 0. 1 17. 1 2. 1
S(20) 0. 6 20 0. 2 15. 4 1. 6
S(21) 0. 8 5 0. 02 28. 6 2. 9
S(22) 0. 8 10 0. 05 24. 2 2. 6
S(23) 0. 8 15 0. 1 22. 1 2. 5
S(24) 0. 8 20 0. 2 16. 5 1. 3

Fig. 3摇 The topology of involved neural network.

4. 1摇 Architecture optimization of neural network
In the neural network based model, too few hid鄄

den neurons will hinder the learning process and too
many will depress the predictive abilities of the ANN
owing to the overtraining. To make the model com鄄
putationally efficient, experiments show that a con鄄
stant bias added to the input signal can affect learning
time.

Bias is set up to improve the accuracy and speed
of convergence. For choosing the best bias, the MSE
of network simulation and actual results are tested.
According to the demand of material design accuracy,

MSE is less than 0. 2. Normally, bias should be set to
a small value, and the smaller is the value, the higher
is the precision, but too small of the value would af鄄
fect the convergence speed. However, if bias is too
big, it will speed up convergence at the beginning of
the simulation, but when it is near the optimum point
of 0. 37, it will produce an oscillation and a reduce
convergence. Therefore, bias is chosen as 0. 37 in
this paper.

In this paper, bias is added to the input signals
that are near the centers of the training functions,
where the learning rate is highest. Another way to
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make the model computationally efficient is to search
for a theoretical optimal number of hidden units.

The coefficient of the learning rate (滋) and its
corresponding decrease factor (滋d) are two important
parameters and play an important role in the design of
a structure based on diameters and volumes of pores
in the prediction model. In general, the architecture
of a neural network in the model is predetermined
based on a prior knowledge of nonlinear system or de鄄
signer爷 s experience. In this section, a GA鄄based
method is developed to optimize the architecture of
neural network based models. The aim of this section
is to search for the feed鄄forward network architecture
with an optimal hidden layer neuron number and other
structure parameters by GA.
4. 1. 1摇 Genetic algorithm

GA, based on a direct analogy to Darwinian nat鄄
ural selection and genetics in biological systems, is a
promising alternative to conventional heuristic meth鄄
ods. Based on the Darwinian principle of ‘survival of
the fittest爷 [19,20], one of the most important problems
of GA is, as in the ANN case, the premature conver鄄
gence to local minima due mainly to the tendency of
the best individuals to maintain their genetic informa鄄
tion across generations. In this paper, to avoid this
problem, genetic algorithm is improved as following.
N individuals are ranked from the best to the worst.
The best and worst individuals (1鄄N) cross over, and
then the second best and next鄄to鄄the鄄worst individuals
(2鄄[N鄄1]) are selected. GA allows the characteris鄄
tics of the ‘bad爷 solutions to survive from one gener鄄
ation to another, giving more variability to the popu鄄
lations. So, the search space is wide and results are
not easily fallen into premature convergence.
4. 1. 2 摇 Optimization process of genetic algorithm
neural network

In the present work, the flowchart of GA鄄based
neural network optimization model is shown in
Fig. 4.

Fig. 4摇 A GA鄄based NN optimization model.

摇 摇 Many important issues for optimizing a topolo鄄
gy, learning coefficient and learning coefficient de鄄
crease are as follows:

(1)Encoding
Before we apply a GA operation to find out the

optimal architecture of neural network, an effective
neural network encoding is needed to represent neural
networks as a chromosome. We selected a binary co鄄
ded system.

The numbers of hidden neurons and training pa鄄
rameters are represented by haploid chromosomes
consisting of ‘genes爷 of binary numbers. Each chro鄄
mosome has three genes. The first gene represents the
number of neurons in the middle layers of the net鄄
work. The second and third genes represent the learn鄄
ing rate and learning coefficient decreasing factor.

(2)Crossover and mutation
In this study, crossover and mutation operators

are used and the probabilities of the crossover and mu鄄
tation operator are set to 0. 85 and 0. 01, respectively.

(3)Population size
There are no unified rules for determining the

population size, but a population of 50鄄100 is typical鄄
ly used in GA. Once the population size is chosen,
the initial population is randomly generated. So here,
80 random initial values are used to generate chromo鄄
somes. Hence in this study, the initial population
pool value is set to 80 chromosomes.

(4)Fitness function
The structures of neural network are evaluated by

the fitness function鄄mean square error. The optimal
network architecture is obtained by helping to mini鄄
mize the fitness function:

E=移
N

k=1
ek

2 / N (3)
where N is the number of training samples, ek is

the error between the actual and desired value of the
kth training sample.
4. 2摇 Training algorithms
4. 2. 1摇 Description of Training algorithms

There are a few learning algorithms such as gra鄄
dient鄄descent and Levenberg鄄Marquardt. It is difficult
to predict which of these training algorithms will be
the best one for any problem. Generally, it depends
on some factors, the structure of the networks, in
other words, the number of hidden layers, weights
and biases in the network, aimed error at the learn鄄
ing. However, the datum structure and uniformity of
the training set are also important things that can af鄄
fect accuracy and performance. In this study, the pre鄄
diction of pore diameter and volume of the MP / RC /
CC carbon aerogels have been analyzed by using six
different training algorithms. The used training algo鄄
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rithms are Levenberg鄄Marquardt ( LM ), Bayesian
Regularization Algorithm ( BRA ), Batch Gradient
Descent with Variable Learning Rate and Momentum
(VLM鄄BGD), Resilient Back Propagation (RBP),
Normalized Least Mean Square (NLMS) and Recur鄄
sive Least Squares (RLS) .

The training and test data are used to evaluate
each of training algorithms. The fundamental princi鄄
ples of six training algorithms are given in Table 2.
During the training process, the weights and biases of
the network are adjusted to obtain a minimized error
and a high鄄performance solution.

Table 2摇 Training algorithms description.
Training function Description

Trainlm Levenberg鄄Marquardt(LM)
Trainbr Bayesian Regularization Algorithm(BRA)
Traingdx Batch Gradient Descent with Variable Learning Rate and Momentum(VLM鄄BGD)
Trainrp Resilient Backpropagation Algorithm(RBP)

Trainnnnlms Normalized Least Mean Square (NLMS)
Trainnnrls Recursive Least Squares (RLS)

4. 2. 2摇 Evaluation of the training algorithms
Generally, for each neural network using various

training algorithms, the decision鄄making process in鄄
volves the following steps: ( i) constitute a database
for each neural network; ( ii) analysis and normaliza鄄
tion of data; ( iii) train neural network using each
training algorithm and ( iv) test the trained networks.

Each of the training algorithms is tested by these
ways: ( i) the data, which are not used during the
training procedure, are used to test training algo鄄
rithm; ( ii) MSE is used to analysis the error; ( iii)
the neural network predicting data are compared with
the experimental data to evaluate the learning per鄄
formance.

At the beginning of the training phase, the learn鄄
ing coefficient is set to 0. 02. The weights of the
ANN are randomly initialized between 0 and 1. For
the given input data, the response of each neuron in
the output layer is then calculated and compared with
the corresponding real output response. Then, the
prediction error associated with the output response is
computed and sent back to the previous layers, and
the weights are adjusted to reduce the prediction error
using the six training algorithms.

The weights are modified for each set of the
training data. That is, the weights are optimized 500
times and every time the input data set is fed to the
ANN. This process is repeated many times until the
prediction error is reduced to around 5% .
4. 2. 3摇 Simulation results of training algorithms

Comparative studies of pore diameter between
the neural network simulation results from different
training algorithms and experimental ones are carried
out. From Table 3, the predictive results obtained
from BRA,VLM鄄BGD, RLS agree well with experi鄄
mental results, and their predictive errors are slightly
lower than RBP and NLMS. On the other hand, the
predictive results from LM training algorithm are bet鄄
ter than others.

Comparative studies of pore volume between the
neural network simulation results from different train鄄
ing algorithms and experimental ones are carried out.
From Table 4, the error of the RBP and NLMS train鄄
ing algorithm are larger than the others. VLM鄄BGD
training method has a much smaller error than the oth鄄
ers. Predictive results of LM are closer to those of the
BRA method.

Table 3摇 Comparison of pore diameter between predictive results and
experimental results of the different training algorithms.

Samples
Experimental

Pore diameter(nm)
Neural network predictive results to various training algorithms

LM BRA VLM鄄BGD RBP NLMS RLS
S(1) 10. 3 10. 32 10. 47 10. 44 10. 58 10. 53 10. 41
S(3) 7. 5 7. 48 7. 64 7. 68 7. 74 7. 65 7. 56
S(5) 8. 7 8. 66 8. 54 8. 57 8. 49 8. 56 8. 78
S(7) 5. 4 5. 34 5. 25 5. 24 5. 36 5. 21 5. 50
S(9) 3. 8 3. 85 3. 63 3. 56 3. 67 3. 55 3. 59
S(11) 8. 1 8. 07 8. 24 8. 21 8. 39 8. 19 8. 22

摇 摇 S(16) 鄄S(24) and the other twenty independent
data are used to test ANN. MSE is a good criterion to
evaluate of neural network model. Errors of training

and test sets are computed and compared in Fig. 5,
where the change of MSE values for each training
method is given for 600 iterations. The accuracy of
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the Levenberg鄄Marquardt method is evidently seen.
Normally, it has the computational complexity, how鄄
ever it can give the results with a much great

accuracy.
So, Levenberg鄄Marquardt back propagation is

selected as the optimal training algorithm.

Table 4摇 Comparison of volume adsorbed behaviours between predictive
results and experimental results of different training algorithms.

Samples
Experimental

Volume adsorbed behaviours(cm3 / g)
Neural network predictive results to various training algorithms

LM BRA VLM鄄BGD RBP NLMS RLS
S(1) 1. 5 1. 46 1. 48 1. 52 1. 48 1. 57 1. 44
S(3) 1. 1 1. 05 1. 06 1. 07 0. 96 1. 01 0. 93
S(5) 1. 4 1. 47 1. 43 1. 42 1. 57 1. 45 1. 43
S(7) 0. 75 0. 80 0. 79 0. 76 0. 82 0. 79 0. 78
S(9) 1. 9 1. 81 1. 84 1. 85 1. 74 1. 80 1. 88
S(11) 1. 0 0. 97 1. 03 1. 02 1. 11 1. 12 0. 95

Fig. 5摇 Comparison of MSE curves versus number of
iterations for training methods.

4. 3摇 Optimization results of GA neural network
Once the training algorithm ( Levenberg鄄Mar鄄

quardt backpropagation) is selected, we need to opti鄄
mize the topology of the network and other parame鄄
ters. Optimum values of the number of hidden neu鄄
rons, learning coefficient and decrease factor have
been obtained after using GA. The optimized number
of hidden neurons is 7, and the optimized learning co鄄
efficient and decrease factor are selected as 0. 02 and
0. 9, respectively.

For checking on the validity of the optimized
number of hidden neurons,6鄄12 neurons in the hidden
layer are tested. Different trainings are carried out for
seven topologies by using the optimized 滋 and 滋d .
Fig. 6 shows how the correlation coefficient decreases
by 6鄄12 hidden neurons,from which the minimum er鄄
rors are obtained using the topology of 3, 7, 2 (3
nodes in the input layer, 7 hidden neurons and 2 neu鄄
rons in the output layer) . In order to evaluate the op鄄
timized learning coefficient and decrease factor, how
the predictability of the pore diameter and volume
changes with learning coefficient ( from 0. 001 to 1)
and learning coefficient decrease factor ( from 0. 1 to

1) is discussed. When the number of hidden neurons
is 7, Fig. 7 shows how the predictability of the pore
diameter changes with 滋 and 滋d, and Fig. 8 shows
how the predictability of the pore volume changes
with 滋 and 滋d, from which the prediction errors of
pore diameter and volume are minimal when the opti鄄
mized learning coefficient and decrease factor are se鄄
lected as 0. 02 and 0. 9, respectively.

Fig. 6摇 Correlation coefficients (R2) for pore diameter and
adsorbed behaviors predictions depending on the

number of neurons in the hidden layer.

Fig. 7摇 Pore diameter爷s prediction error surfaces of
the learning coefficient and its decrease factor.
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Fig. 8摇 Adsorbed behaviors爷 prediction error surfaces of
the learning coefficient and its decrease factor.

5摇 Prediction and verification results of
GA neural network model for MP / RC /
CC carbon aerogels
摇 摇 To evaluate the neural network architecture, pa鄄
rameter and optimal algorithm, the prediction data (S
(1) 鄄S (16)) and validation data (S (16) 鄄S (24)
and the other twenty independent test data are selected
as appraisal test data. In this step, the optimized to鄄
pology (3, 7, 2) and the selected 滋 (0. 02) and 滋d

(0. 9) are used.
Fig. 9 shows pore diameter ( Fig. 9a) and vol鄄

ume ( Fig. 9b) versus the corresponding predicted
data.

摇 摇 In Fig. 9, the prediction results are in good
agreement with experimental data. Moreover, the
prediction performance of the model for pore diameter
and volume are evaluated by the correlation coeffi鄄
cients (R2 ) between the predicted and experimental
values and root鄄mean鄄square prediction error (RM鄄
SEP) .

A good model should be with a high R2 value
and a low RMSEP value. RMSEP is calculated by
Eq. (4) .

RMSEP= 移
n

i=1
(ypi-yni) 2 / (n-1) (4)

Where ypi is prediction value of the model, yni is
experimental value and n is the number of predicted
samples.

According to Eq. (4) and Fig. 9 (a), (b), the
correlation coefficients of pore diameter and volume
of MP / RC / CC carbon aerogels are 0. 992 and 0. 981,
respectively, and the root鄄mean鄄square prediction er鄄
rors of RMSEP are 0. 077 and 0. 054, respectively.

It is found that the predicted data of the model
are in good agreement with the experimental data. A
high correlation between experimental data and neural
network model data of pore diameter and volume is
obtained. Meanwhile, the network prediction has less
root mean square error. Through the above analysis,
it is revealed that the neural network model has good
performances such as high accuracy and easy to im鄄
plement by choosing adapted training function, opti鄄
mized structure and parameters.

Fig. 9摇 Correlation plots between prediction and actual values for the MP / RC / CC carbon aerogels:
(a) Pore diameter versus predicted values and (b) adsorbed behavior versus predicted values.

6摇 Conclusions
摇 摇 Quantitative data on the pore structure such as
the diameter and volume of pores are essential to car鄄
bon aerogels. Traditional experimental design method
is inefficient, costly and cannot meet pore structure
controlling and predicting requirements.

In this paper, a kind of neural network is pro鄄
posed to predict and optimize pore structure of carbon

aerogels. To obtain an optimized ANN, ANN topolo鄄
gy and learning coefficients are discussed. Then, va鄄
rious training algorithms based on learning perform鄄
ance of the controlling and predicting neural network
model are investigated. The conclusions of this study
are as follows.

GA NN鄄based model is adopted to select the
ANN topology and to optimize the learning coefficient
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and learning coefficient decrease factor. It is shown
that ANN topology can be designed successfully.

An artificial neural network for carbon aerogels
preparation has also been optimized through a proper
selection of the training algorithms. Different ANNs,
trained with different learning functions, have been
assessed on their predictive ability. It is confirmed
that the Levenberg鄄Marquardt is the optimal training
algorithm.

Sixteen experimental data are used to train the
neural network based model, and thirty鄄six validation
tests are used to verify the effectiveness and robust鄄
ness of the neural network architecture. The root鄄
mean鄄square prediction errors for pore diameter and
volume are 0. 077 and 0. 054, respectively. Also, the
correlation coefficients (R2) clearly show that the op鄄
timized neural network model has a precise predicta鄄
bility. Furthermore, comparisons between experimen鄄
tal data and numerical simulation results reveal that
the predicted data agree well with experimental ones.
It is proved that the pore structure of carbon aerogels
can be simulated by the neural network model, which
can be used to guide scientific and engineering re鄄
search.
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