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Abstract:

Diamonds with two extreme sizes, large single crystal and nanocrystalline, have completely different properties, and

have aroused the continuous attention of researchers. Each has its own merits and can be converted into the other. The synthesis of

large single crystal diamond can be described as the aggregation, assembly and combination of nanocrystalline nuclei, i.e., diamond

transforming from the nano-scale to the inch scale. A large single crystal diamond can be transformed into nanocrystals by surface

nanocrystallization. The preparation methods, properties and applications of single crystal diamonds of different sizes are introduced

and the transformations between them are described. Research interest in controlling the crystal size is discussed.
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1 Introduction

Diamond is a kind of atomic crystals composed
of carbon atoms with strong C—C sp’ bond",
resulting in some extreme properties, such as the
highest hardness (1.04x10* kg mm ), high Young
Modulus (1220 GPa) and thermal conductivity
(2200 W m"-K™") in nature. Meanwhile, other prop-
erties including wide band gap (5.5 eV), high
electron/hole mobility (2200/1600 cm V™ '-s™"), negat-
ive electron affinity, chemical inertia and particle

bombardment resistance' *)

also guarantee a wide ap-
plication prospect. Typical applications are wear-res-
istant coatings, tools, heat sinks, optical windows,
sensors, and electronic or optoelectronic devices, such
as transistors.

Since the first synthetic diamond appeared in the
1950s, the manufacturing technologies of diamond
and diamond-like carbon (DLC) have been develop-
ing prosperously. By means of direct solid phase
transformation of graphite under static pressure and
chemical vapor deposition (CVD)™, materials with
the similar properties as natural diamond can be pre-

pared. Processing technology plays an active role in
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improving the properties of diamond. Doping has a
positive effect on electrical properties”™, and boron-
doped diamond (BDD) is one of the most promising
electrode materials'®. The formation of metal carbides
makes it possible to stabilize metal catalysts””. De-
fects also add better performance to diamond. The lu-
minescence defects (color centers) can generate non-
classical state of light and emit single photon at room
temperature, which is the key in the quantum optical
communication system™. In particular, a device con-
taining NV color centers can be used as a memory for
long-distance quantum communication'”.

As the two limits of diamond grain size, large-
scale single crystal has no grain boundary, less de-
fects, and high purity!'”, while the nanocrystal con-
tains a large number of grain boundaries and interface
atoms'''"!. In the traditional and newly-emerging areas,
these two kinds of crystals with the tremendous differ-
ence in the grain size have shown their irreplaceabil-
ity to attract continuous attention of researchers.

In this paper, the main preparation methods of
bulk single crystal and nanocrystalline diamond are
introduced. Their structure, properties, and applica-

tions are discussed. In addition, the concepts of states
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transformation for as-grown crystal and surface nano-
crystallization are emphasized, and the theoretical and

experimental research directions are prospected.

2 Large-scale single crystal diamond

In order to produce diamond devices which can
achieve the performance predicted by material proper-
ties, it is necessary to obtain bulk raw material with
high structural integrity and chemical purity!'”. There-
fore, the preparation of inch size single crystal wafer
has become a focus for decades'"!.

2.1 Preparation of bulk single crystal diamond
2.1.1 High pressure high temperature (HPHT) method

The high pressure high temperature (HPHT)

method simulates the formation conditions of dia-

14 which is widely used in in-

mond growth in nature
dustry to synthesize single crystal diamond wafer.
Graphite is used as raw material, and transition metals
or alloys are added as catalysts. After they are mixed,
a constant high pressure of 5—7 GPa and temperature
of 1 300—1 700 °C are applied"”. Thus, the thermody-
namic condition for the formation of diamond as a
stable phase in the carbon phase diagram is met, and
the graphite will be transformed into diamond.

Due to the harsh growth conditions, even after
decades of development, the size of diamond products
is still limited to about 1 cm’. Impurities are also easy
to be introduced, such as N from the atmosphere, Fe

1% As a result, the qual-

and Co from metal catalysts
ity of products is difficult to control to meet the re-
quirements of advanced scientific research and applic-
ation fields.
2.1.2  Chemical vapor deposition (CVD) method
Chemical vapor deposition (CVD) is a technique
for diamond growth at low pressure. Owning to the
deviation from thermodynamic equilibrium condi-
tions, the temperature can be reduced, which makes it
possible to grow thin films on large area substrates''”.
Among them, microwave plasma-assisted CVD (MP-
CVD) is one of the most widely studied ones'*)
whose principle is as follow. Microwave band electro-

magnetic wave is employed to accelerate electrons to

cause collision with H, and CH, molecules and dis-
charge to generate H* and CH,* radicals under in-
tense discharge heat!'” as shown in Fig. 1.

CVD diamond must be deposited on a substrate,
process of which can be classified into two types: ho-
moepitaxial growth where a single crystal diamond
prepared by HPHT or CVD method is employed as a

substrate®”

, and heteroepitaxial growth where a non-
diamond substrate is used”'!. The common methods of
homogeneous epitaxy include the three-dimensional
technology of repeated growth in different directions
(22]

on {100} crystal planes~, and mosaic technology, in
which several seeds are spliced into a larger
substrate™!. By setting a substrate consisting of a few
CVD single crystal wafers which are grown and then
stripped by "lift-off" method on the same HPHT seed,
a large-scale monocrystal film of 40 mm x 60 mm can
be prepared*”.

Despite the significant progress that homogen-
eous epitaxy has made, the requirement of diamond
seeds as substrates brings about limitations in both
cost and size. Moreover, many defects occur in the
joints between the seeds. Therefore, researchers have
been looking for a foreign substrate suitable for the
preparation of single crystal diamond of large size and
low number of defects under a relatively low cost™*”.
The early studied materials were Si, c-BN, Pt, Ni, SiC,
etc., but the epitaxial products were mostly polycrys-
talline diamond films with nearly uniform
orientation”®. At present, Ir (100) is the only avail-
able substrate in compliance with the goal, on which a
high-quality free-standing single-crystal diamond
wafer with a diameter of 91 mm has been success-
fully obtained™”. However, the stability and repeatab-
ility of the process need to be further confirmed to
realize extensive manufacturing.

2.2 Properties and applications of bulk single
crystal diamond

Compared with polycrystalline diamond, single
crystal diamond has excellent optical properties, espe-
cially optical transmittance, due to the absence of

grain boundary, which reduces the absorption from
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Fig. 1 Principle of single crystal diamond growth by CVD™**¥, the background diagram showing the reactions during the generation of radicals in the cham-

ber, (a)-(f) display six of the most common devices which call for high-quality, large-scale diamond wafer. Reprinted with permission.

amorphous carbon and impurities, and the scattering
of infrared light by irregular large-size grains™. A
comparison of the HPHT single crystal diamond pur-
chased from Zhengzhou Sino-Crystal Diamond Co.,
Ltd., the CVD single crystal diamond from Irish Ele-
ment Six, and the CVD polycrystalline diamond from
American II-VI Incorporation of their infrared trans-
missivity is shown in Fig. 2, which was obtained by a
Fourier Optica infrared spectrometer by PerkinElmer
with a measurement accuracy for absorption of 0.07%
and a measuring range of 4 000—400 cm .

The transmissivity of two single crystal dia-
monds, either synthesized by HPHT or CVD methods,
is much higher than that of polycrystal diamond. Ex-
cept for the intrinsic optical absorption (2.6—7.8 um),
there is a peak at 1 430—1 000 cm ™' of the HPHT dia-
mond, associated with the N impurity in the lattice
while the CVD single crystal diamond is highly trans-
parent at low wavenumber bands, whose transmissiv-
ity can reach 70%, close to the theoretical value of
71.49%"".

CVD single crystal diamond with high purity and
quality has been applied in various high-tech fields
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Fig. 2 Infrared transmissivity of single crystal (SC) and polycrystal (PC)
diamond samples, the SC samples were produced
by HPHT and CVD methods.

such as the diamond-based particle detectors with ex-
treme-sensitivity”®, the tools that can be used to mill
surface into mirror-polished one®”*”, the optical win-
dows with excellent optical transmittance*"! and the
anvils used as ultra-high pressure vessels'*. Undoped
single crystal diamond has a band gap of 5.45 eV,
which is an ideal material for semiconductors™’, such
as diodes, field-effect transistors, radio frequency
electronic devices, and other electrical devices*. At
the same time, due to its high thermal conductivity, it

has great advantages in harsh environments such as
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high temperature, strong radiation and large current
owing to its high thermal conductivity, which can be
manufactured into high-temperature, high-power, and

high-frequency semiconductor devices™*".

3 Nanocrystalline diamond

Since the 1990s, a series of breakthroughs have
taken place in the area of nanodiamond, making it a
research hotspot. The main progress includes the pre-
paration of stable colloidal suspensions*”, the realiza-

tion of chemical modification of particle surface!*”,

and the success in purification technology™*.
3.1 Preparation of nanocrystalline diamond
Despite a variety of approaches are used to pre-
pare nanocrystalline diamond, including phase trans-
formation of graphite under high pressure*”, con-
fined pulse laser deposition (CPLD)™”, high energy
ball milling (HEBM)"", glow plasma chemical vapor
deposition (GPCVD) P, and pulsed-laser”™ or ultra-
sound cavitation induced® transformation, detona-

(55 in which

tion is the earliest and most mature one
the products come from explosive molecules, and the
mechanism is as shown in Fig. 3(a).

Nanodiamond particles are created under the en-
ergy provided by explosion, accounting for more than
75 wt% in the products along with a mixture of other
carbon allotropes and impurities””. The diameters of
these particles are 4—5 nm. Although the temperature
and pressure are not enough to form bulk liquid car-
bon, they are sufficient for the formation of small
droplets of nano-scale. Thus, the formation mechan-
ism of nanodiamonds can be described as a multistage
sequential process of condensation, homogeneous
nucleation and crystallization in liquid carbon from
supersaturated carbon vapor™® (Fig. 3b).

3.2 Properties and applications of nano-crystal-
line diamond

Nanomaterials are known as "the most prom-
ising materials in the 21st century"”. As a kind of them,
nanodiamond retains most of the physical and chemic-
al properties of bulk material, including outstanding

[59] [60]

mechanical, thermal”™, optical"™™, electrical perform-
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Fig. 3 Detonation synthesis of nanodiamonds: (a) explosive reactants are
detonated in a closed metallic chamber to form diamond-containing soot
and (b) schematic of the detonation wave propagation, in which molecules

form carbon nanoclusters, coagulate into liquid nanodroplets, and finally

turn into nanodiamonds by crystallization, growth and agglomeration®®,

Reprinted with permission.

ance!®"!

. It also possesses various characteristics of
nanomaterials, such as a large specific surface area, a
high chemical activity and a large number of structur-
al defects and oxygen-containing functional groups on
the surface.

Due to its small particle size, the number of
atoms on the surface of nanomaterials increases rap-
idly. The lack of adjacent atoms around the surface
atoms results in many dangling bonds that are unsatur-
ated and easy to combine with other atoms. In addi-
tion, nanodiamond with good dispersion*” has high
surface energy, leading to high catalytic activity in
different reactions'®”.

The nitrogen-vacancy (NV) color centers can be
generated in nanodiamond irradiated by high energy
particles and annealed in vacuum at 600-800 °C'’),
which contribute to fluorescence characteristics. The
spin polarization of the NV color centers is control-
lable!®. The application of fluorescent NV color cen-
ters in allotrope-pure diamond (diamond crystals con-
taining only one carbon allotrope) in quantum com-
puting is expected'®”.

Because of its unique properties, nanodiamond is
important for theoretical research and applications.
Nanodiamond can be added into lubricant to effect-
ively reduce the wear of friction pairs and prolong the
service life of engines'®”. On the one hand, the ultra-
high hardness of nanodiamond can be used to polish

the surface and to enhance surface hardness. On the
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other hand, due to its small particle size, it can be
filled into the surface micro concave to reduce rough-
ness. In addition, diamond nanoparticles are spherical
or quasi-spherical, the "ball bearing" effect will play a
positive role on the friction surface. Its excellent
mechanical and thermal properties in combination
with surface chemical activity also guarantee nanodia-
mond to be a well-welcomed reinforcing phase of
nanocomposites’ " 7).

The application of nanodiamond in medical sci-
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ence is mostly based on its self-assembly ability!®®,

non-toxic'® and surface modifiability”” by different
functional groups (Fig. 4a). With a high dispersion ca-
pacity in water, nanodiamond is highly anticipated in
targeted therapy and drug delivery”"! (Fig. 4b). Tak-
ing worms as experimental objects, fluorescent nan-
odiamond does not induce stress reaction'’”, Its high
optical stability and emission ability of high bright-
ness and multi-frequency fluorescence are favorable

for its application in biological imaging'™.

{(-Small molecule M|-Protein molecule -",7'.: -Plasmid DNA ¢%%%-Polyethylenimine “#- -siRNA @ -Nanodiamonds

Fig. 4 Surface modification of nanodiamond for potential medical applications: (a) the ability of bonding with various functional groups on the surface and

(b) nanodiamonds as a drug delivery platform’*. Reprinted with permission.

Furthermore, nanodiamond can be used as an ad-

ditive for electroplating and electroless plating!”’

,asa
catalyst for chemical industry to oxidize CO into
CO,", and as a polishing fluid for fine polishing of
various optoelectronic crystals, optical components,
and semi-conductor integrated circuits. Nanodiamond
can be used as a seed layer to enhance the nucleation
density of CVD diamond film for crystal growth, and
sintered into bulk polycrystals. Boron-doped nanodia-
mond is conductive for electrical analysis, electro-
chemical double-layer capacitor, and battery, while
undoped non-conductive particles exhibit redox activ-
ity in electrochemical system'””),

Nanodiamond can used to form new allotropes
by phase transformation, such as the formation of a
structure called "new diamond" (a metastable phase of
carbon with a face centered cubic structure)’®. Car-
bon nano-onion, obtained by graphitization of nan-
odiamond, shows potential applications in energy

storage, composite materials and catalysis"”".

4 Mutual transformation between
nanocrystalline diamonds (NCDs) and
bulk single crystal diamond (SCD)

4.1 From NCDs to SCD: The growth of large-size
single crystals

During the growth of large-size single crystal
diamond, the interconnection between nanocrystals
can be observed and considered to be the mechanism,
similar to that of the growth of other crystals’®™. The
formation of an amorphous carbon layer in which

t*! when dia-

primitive nuclei are wrapped occurs firs
mond deposits on a heterogeneous substrate. A bias
negative voltage can be applied to increase the nucle-
ation density, which is called bias enhanced nucle-
ation (BEN) method . After the termination of bias
voltage, active atomic hydrogen [H] in the plasma will
quickly etch the amorphous carbon layer, leaving the
nanometer size diamond nucleus™’.

The carbon atoms on the substrate surface dis-

solve into the crystal lattice to form a supersaturated
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solid solution'®!

and the precipitation following de-
creases the carbon concentration in the solid solution.
The dissolution-precipitation process continues and
maintains a dynamic equilibrium™", triggering a rapid
change of surface morphology. The surface morpho-
logy change is conducive to the translation, rotation,
aggregation, and self-assembly of nanoscale nuclei.
Grain boundaries are eliminated through the oriented
attachment (OA) growth™!, which is an approach to
obtain single crystal diamond™ through the combina-
tion of primitive nuclei into secondary ones until a
bulk single crystal is formed™” *. The process is
shown in Fig. 5.

Although nucleation mechanism is rarely re-
ferred in the growth of large-size single crystal dia-
mond on a homogeneous substrate, it can still be in-
cluded® by considering that the diamond seed (that
is, the substrate) is a pre-setted crystal nucleus. In ad-
dition, the pits formed by removing surface defects
during the etching and the edge regions not connected
to other crystal nuclei can also be regarded as discon-
tinuous growth islands”!). New grains attach on the
steps of the pits and edge regions, rapidly aggregate
and cement”” according to the Frank-Vander Merwe

mode.

Homo- and hetero-epitaxy can be considered as
two different approaches from nanodiamonds to large-
size single crystal diamonds””. The nucleation, later-
al growth by heteroepitaxy, and morphology trans-
formation from bottom to top by homoepitaxy are de-
scribed as follows:

(1) Interaction between carbon atoms and the
substrate. The bias voltage at the initial stage of het-
eroepitaxy allows carbon ions or groups to shallowly
implant into the subsurface of the Ir substrate to form
a supersaturated solid solution, which ensures the con-
tinuous dissolution-precipitation circulation (Fig. 5a),
and the formation of carbon sp’ covalent bonds
between C and Ir atoms. That is the reason why the
Ir(100) substrate has the optimal potential and unique-
ness for the growth of the large-size single crystal dia-
mond. Although without much description of the in-
teraction between each two atoms during homoep-
itaxy, the deposited carbon atoms may migrate on the
surface and bond with the substrate atoms by the
formation of sp’ bonds.

(2) Formation of a primitive nucleus. The left "is-

lands" by pretreatment and defect removal in homo-

NCDs to SCD
Growth of bulk

single crystal

Fig. 5 Growth of large-size single crystal diamond from connection of nanocrystals, the main steps of growth process are shown by the ring in the middle:

(a) dissolution-precipitation process of C atoms?”), (b) formation of a primitive nucleus

disappearance of boundaries!®!

and (e) formation of a secondary nucleus

271 (c) self-assembly of primitive nuclei, (d) oriented attachment and

171 Reprinted with permission.
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geneous epitaxy are equivalent to the preparation of a
diamond primitive nucleus besides the diamond wafer
itself. For the heteroepitaxial growth, the C sp’ cova-
lent bonds may be retained during atomic hydrogen
etching®””, leading to the formation of a more stable,
diamond-like structure by connecting the surrounding
nearly-sp® bonds until a primitive nucleus with the
size of about 10 nm is formed (Fig. 5b).

(3) Aggregation and self-assembly of primitive
nuclei. Generally, it is easier to observe the move-
ment and self-assembly of grains in liquid®. Al-
though the diamond grains grown on solid substrates
cannot move as freely as they do in liquid, the newly
formed nuclei tend to concentrate near the original
ones to form "crystal domains", that is, a large quant-
ity of crystal nuclei with a similar orientation. In our
experiment, the aggregation and self-assembly of
these high density diamond nuclei on Pt(111) sub-
strate are also much apparent (Fig. 5c). A decrease in
sp’ carbon content of the vicinity of nuclei happens
after the formation of a primitive nucleus on the sub-
strate surface, resulting in a carbon concentration
gradient with the faraway regions, which provides a
driving force for the further carbon-containing groups
to supply the nucleation site. The rising surface en-
ergy also promotes the self-assembly. During homo-
geneous epitaxy, the formation of new nuclei can also
be regarded as a result of the aggregation of the pre-
setted "nuclei" (mainly refer to the diamond substrate
itself).

(4) Disappearance of grain boundaries and the

formation of a secondary nucleus. The perfect struc-

(o) ‘
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ture of the original nucleus and the substrate causes
the orientation and ordered alignment of subsequent
grown nanocrystals. When the distance between nuc-
lei is close to the atomic layer spacing, the adjacent
grains can undergo OA growth, which transforms
grain boundaries into line defects (dislocations or dis-
clinations, Fig. 5d)°”), thus forming a secondary nuc-
leus. Fig. 6a shows the synthesis of bulk single crys-
tal diamond from nanoscale particles by OA or nearly-
OA routes. Because of the limited movement of grains
on the solid substrate, only when the orientation dif-
ference between two grains is small enough (some
studies point out that the value needs to be within
1°Y " can planar defects be replaced by line defects.
In addition, OA growth requires the existence of un-
saturated dangling bonds on the grain surface®”,
which can be easily met in chemical vapor deposition.

(5) The aggregation of secondary nuclei into
single crystal diamond. When a material deposited on
a homogeneous substrate, it will grow directly accord-
ing to the Frank-Vander Merwe mode. When a mater-
ial is deposited on a foreign substrate the Stranski-
Krastanov mode is obeyed. During heteroepitaxy, the
"domains" generated by aggregation of secondary
crystal nuclei after the self-assembly and OA growth
in the above steps (3) and (4), gradually form an epi-
taxial layer with the increase of the film thickness.
Then the layer becomes seed crystals, and in the sub-
sequent growth stage, which is similar to that of ho-
moepitaxy, even typical homoepitaxial growth steps
may be observed on the surface.

The above process will inevitably leave evid-

Fig. 6 Process of single crystal diamond growth: (a) several routes toward bulk single crystal diamond, including OA and nearly-OA growth®™, (b) laser scan-

ning microscopic cross section morphology of homogeneous epitaxial diamond, in which different crystal forms from nanocrystal to

single crystal can be seen from the bottom to the top

1 Reprinted with permission.
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ence of the gradual transformation from nanodia-
mond to bulk single crystal on the cross section, as
shown in Fig. 6b, which can be observed in both
homo- and hetero-epitaxy. Thus, it can be considered
that the morphology transformation from nano-crystal
to large-size single crystal diamond is the mechanism
behind the epitaxial growth.

Furthermore, the control of the grain size is ex-
pected to be realized by adjustment of the thickness of

sediment!"™”

. Then different crystalline states from
nanocrystals to monocrystals can be formed on the
same type of substrate (even different regions of the
same Ir(100) substrate wafer) when different manu-
facturing conditions are employed. In our experi-
ments, we have realized nanodiamond on the Ir(100)
substrate when bias voltage is applied all the time, and
a continuous heteroepitaxial film is formed when a bi-
as voltage is applied for only a few seconds during
nucleation.

The transformation form NCDs to SCD can be
regarded to be spontaneous, although it only occurs on

[101]

some specific substrates (mainly diamond and

iridium!"**). There will be more optional substrates to

be found, or even an arbitrary substrate might be ap-
plied"”!. The realization of accurate grain size con-
trolling on the same substrate is still under investiga-
tion, which is expected to be achieved by adjusting the
growth parameters, especially the bias voltage. Once
the method is developed, it will be more convenient to
regulate the grain size in the growth process.
4.2 Transformation from SCD to NCDs: surface
nanocrystallization of SCD

Reactive ion etching (RIE) is one of the most
popular techniques for preparing single crystal dia-
mond nanowires''™ from bulk material, which is a
top-down method for preparing micro- or nano mater-
ials!"®.

Diamond nanowires (Fig. 7a) can be obtained by
etching planar diamond films with the help of masks,
including metals (Al, Mo, Ni, Fe, Au, etc.), oxides
(SiO,, AlLO,, etc.), and diamond nanoparticles'*".
Direct etching of HPHT or CVD single crystal dia-
mond can achieve ordered single crystal nanowire ar-

rays''””! which are suitable for quantum information

[108] [109]

processing ' and DNA sensing' - or platforms for

biofunctionalization. The diamond nanowires can also

. Surface nanocrystallization '

Ni layer annealing etching removing Ni

(a) Diamond nanowire (top-down)

Ni film deposition Ni patterning

LThermc-chemical reaction Ni film removal CVD diamond growth
— _— . . . .

HPHT-diamon T
I i substrateﬂ., > fRdea i

(c) Single crystal on nanoneedles

(b) Diamond anvil cell (NCDs on SCD)

26 ym (middle)

0 um (Diamond/Ir

_“’ interface) -!‘
—-— e o mm e = =

(d) Patterned nucleation and grouth

Fig. 7 The ways of diamond surface nanocrystallization: (a) top-down preparation of diamond nanowires, Ni was used as a mask during the etching of HPHT

bulk crystal to obtain nearly vertical arrayed single crystal nanowires"*), (b) a secondary anvil is formed by adding nanodiamonds to the single crystal diamond

anvil cell (NCDs on SCD) %), (c) post growth of single crystal diamond on micro- or nano-needles, which can effectively improve the epitaxial quality"'”and

(d) patterned nucleation and growth on a foreign substrate, which is equivalent to the regular preset of crystal nuclei!

121 Reprinted with permission.
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be doped[”o] or further modified by other particles“”],

or be broken up and restructured'”, resulting in a
variety of morphologies and properties' ).

The above technology is not only a method of
controllable surface nanocrystallization of microcrys-

4 or bulk single crystal, but also a

talline structure
way to the high quality large-size single crystal dia-
mond. It can be described as post-growth on the basis
of diamond micro- or nanowires, which might be ap-

U1 or later. After the depos-

plied at the growth stage
ition of a diamond film on a homogeneous HPHT
wafer or heterogeneous Ir(100) substrate, it is etched
into microwires or nanowires, followed by the contin-
ued growth on the structure obtained'''®, as shown in
Fig. 7c. This treatment can effectively improve the
quality of diamond films and reduce the full width at
half maximum (FWHM) of rocking curve of the (004)
diffraction peak from 0.22° to 0.07°""7,

This is essentially an implemented case of pat-
terned nucleation and growth (PNG), which is com-
monly used in the epitaxial growth for semiconduct-
ors!'"® to reduce the generation of threading disloca-
tions at the interface between the substrate and dia-
mond film"". After diamond nucleation, the surface
is etched into a designed pattern of different shapes,

[120]

such as trenches and vias

[122]

, dot-arrays''*land
stripes' ~~, which is also equivalent to presetting regu-
lar crystal arrays. For example, grid network with Ir as
the growth template and diamond crystals as the bor-
der''*" can be obtained. Among the options of candid-
ate mask materials, Ir might be the most suitable
one!*", due to the auxiliary function it can play on
diamond nucleation.

Except for surface etching, nanocrystal bonding
on single crystal diamond (nanocrystals on monocrys-
tal, or NCDs on SCD) can also be used to realize sur-
face nanocrystallization. The addition of a nanodia-
mond secondary anvil (Fig. 7b) to the bottom-tip
structure of the traditional single crystal diamond an-
vil can eliminate brittleness of the single crystal dia-
mond while maintaining the structural integrity of the
primary anvil. In particular, nanodiamond particles

prepared by the HPHT method can be positioned on

the bottom-tip surface!'”’”. Nanocrystals can also be
grown directly on the single crystal by the CVD meth-
od, which is of high stability and repeatability due to
selective growth and chemical bonding!'*”.

The process described above belongs to the
concept of a bottom-up approach!** which is an al-
ternate method for the preparation of diamond nano-

U2) or nanowires!™”, It relies on the self-as-

clusters
sembly of molecules caused by physical or chemical
interactions'*!). Precise position control and the en-
hancement of the binding force with the primary
structure are extremely necessary for the use in high-

tech fields, which could be paid more attention to.

5 Conclusion and outlook

The research on the two extreme crystal size dia-
monds (large-size single crystal and nanocrystal dia-
monds) has been going on for several decades, and the
topic is still attracting the attention of investigators.
The two particle sizes represent different growth di-
mensions of the same kind of crystal materials, which
leads to the innovation of a crystal growth theory.

As a three-dimensional material, bulk single
crystal diamond has grown from epitaxial film from
an area of 100 pm to a self-standing wafer with a
thickness of more than one millimeter and a diameter
of several inches. In terms of quality, the CVD crystal
has almost no closed grain boundaries and threading
dislocations with high purity, low defect density and
structural integrity, which is comparable to that of nat-
ural diamond.

Nanodiamond is a kind of materials with a low
dimension. Different preparation methods of zero di-
mensional nano-particles have been developed, which
greatly improves the homogeneity and integrity of the
particles when the particle size is decreased. The ap-
plications of one-dimensional diamond nanowires in
the field of quantum computing and biological detec-
tion also allow a new development direction for nan-
odiamonds.

In this paper, the two kinds of materials are intro-
duced, and the main preparation methods, properties,

and applications are described. The concepts and ap-
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proaches of crystalline state transformation and con-
trolling are emphasized. The growth mechanism of
large-size single crystal diamond is the aggregation
and connection of nanocrystals, during which differ-
ent morphologies and scales can be designed by ad-
justing growth parameters or layer thickness. The pre-
paration of diamond nanowires and the selective de-
position of diamond nanocrystals on single crystals
are two ways of surface nanocrystallization, which
can modify and change the morphology of crystal sur-
faces. They are effective ways to expand the theoretic-
al research and application fields of diamonds.

There is still a lack of systematism and integrity
in the research of diamond granularity transformation
both in theory and experiment. The in-situ observa-
tion technology for the synthesis of large-size single
crystal diamonds is not mature enough, and the de-
scription of the growth process is yet to be completed
by more evidences as well. The development of the
use of in-situ transmission electron microscopy may
become an anticipated means to obtain detailed in-
formation, but the preparation temperature of large-
size single crystal diamonds usually exceeds the
working conditions, which needs to be further solved.

In addition to expect an improvement of observa-
tion methods, the routine of particle size transforma-
tion from nanocrystals to monocrystal itself still calls
for expanding, and the realization process needs to be
simplified. The future development direction can be
based on the treatment under different temperatures
and pressures for small-size nanodiamonds obtained
by detonation. In this way, diamond crystals with an
arbitrary particle size can be prepared by regulating
the conditions and can be monitored by in-situ and
real time observation, which can expand the particle
size range of the products and make the process more
controllable, leading to an extensive application
scope.

Surface nanocrystallization of a single crystal,
diamond, especially in the preparation of nanowires,
has been verified by many experiments, but the theor-
etical investigation are still insufficient, so more re-
searches are expected to be carried out to reveal the

basic mechanism. Besides, large-size and high-qual-

ity CVD single crystal diamond products have been
prepared by an etching-assisted growth technology,
which is realized by the introduction of micro- or
nano- wires after the deposition of diamond wafer.
They are promising candidate materials for a variety
of devices with high performance. However, there is
still a long way from laboratory to industrialization,
which may be brought about by prematuration of
device design.

The selective growth of nanodiamonds on the
surface of a large-size single crystal diamond, wheth-
er as a functional material or a new structure material,
is short of further attempts to find other applications.
For example, it can be used as a method of precision
adjustment to the structure, such as the preparation of
gear microteeth, compensation of single crystal de-
fects, and a secondary structure for hydrophobic ma-
terial and so on.

In conclusion, many concepts of grain size con-
trolling in growth and surface nanocrystallization after
growth are still in the stage of theoretical imagination
and need to be confirmed by experiments. It is also re-
commended that further work be undertaken to build

universal principal theories.
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