F39% 3
2024 4 6 H

;oM ok MR
NEW CARBON MATERIALS

(FR3EsC) Vol. 39 No.3

Jun. 2024

Cite this : New Carbon Materials, 2024, 39(3): 439-458

DOI: 10.1016/S1872-5805(24)60853-X

Advances in graphene/molybdenum dichalcogenide-based van der
Waals heterostructure photodetectors

ZHANG Xin-hua"!, LIU Wei-di*",

GONG You-pin**,

LIU Qing-feng"*, CHEN Zhi-gang™*

( 1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China,

2. School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Center

for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia;

3. Center of Quantum Materials and Devices at Institute of Advanced Interdisciplinary Studies,

College of Physics, Chongqing University, Chongqing 400044, China )

Abstract:

Graphene is widely used in photodetection because of its high carrier mobility and wide spectral absorption range.

However, its high dark current caused by its low light absorption severely limits its performance. Molybdenum dihalide (MoX,, X=

S, Se and Te) has a high absorption coefficient, which can compensate for the high dark current in graphene-based photodetectors

and result in outstanding photoelectronic properties of those based on a graphene/MoX, van der Waals heterostructure (vdWH). In

this review, we firstly review working principles, performance indicators, and structures of photodetectors. After that, the signific-

ance of graphene/MoX, vdWH photodetectors is highlighted from the fundamental perspective. Preparation methodologies and per-
formance enhancement strategies of graphene/MoX, vdWH photodetectors are correspondingly summarized. In the end, we high-
light the current challenges and future directions of the graphene/MoX, vdWH photodetectors. This review will guide the design of

high-performance vdWH photodetectors.
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1 Introduction

Photodetectors can convert the absorbed optical

signal into electrical signal', which are widely used

Pl medical imaging", astro-

in military reconnaissance
nomy'", optical communication”, fire warning!®, tem-
perature detection'”, efc. Based on the working mech-
anism, photodetectors can be categorized into photon
detectors™ and thermal detectors”. The thermal de-
tectors can convert the infrared radiation energy in-
duced by temperature change into electricity, which
includes pneumatic detector''”, thermocouple!", ther-

[12]

mistor''? and pyroelectric detector!>'*. Thermal de-

tectors can be used in fire alarming'"”, temperature de-

[16] [18]

tection!'”, rocket engine!'”!, thermal imaging"™, etc.

However, their application is limited by temperature
fluctuation noise arising from the radiating back-
ground. This drawback can be overcome by photon

[19]

detectors" . Photon detectors are radiation detectors
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based on either external®””

or internal photoelectric
effects”"*!(Fig. 1). Modern photodetectors are mostly
based on the internal photoelectric effect, which are
solid state electronic devices made of semiconductor
materials and also known as semiconductor photode-

tectors!®’!

. In semiconductor photodetectors, two-di-
mensional (2D) material-based photodetectors™ have
attracted extensive interest because of their ultra-wide
spectral response range from ultraviolet to terahertz,
ultra-speedy photoresponsivity, and high spatial resol-
ution for imaging™".

The signal conversion process from optical sig-
nal to electrical signal in 2D material-based photode-
tectors can be separated into in 3 steps. (1) When the
incident photons are absorbed by the photosensitive
materials after the light trapping process, the photo-
excited electrons transit from the valence band (VB)
to the conduction band (CB) of the photosensitive ma-

terials and left holes in the VB. In this step, materials
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Fig. 1 Classification and applications of photodetectors®***!!13202127281 ' Copyrioht 2018, American Chemical Society!™. Copyright, 2018, Springer Nature™.

[9]
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with high absorption coefficient and wide spectrum
absorption range play important roles in improving
the performance of 2D material-based photodetectors.
(2) Under the applied external electric field or the in-
ternal electric field formed at the heterostructure inter-
face, the photoinduced electron-hole pairs can be sep-
arated, and different carriers move to the correspond-
ing electrodes along the conduction path. In this step,
high carrier mobility (x) of the material can contrib-
ute to high photoelectronic performance. (3) After the
charge carriers arrive at the electrodes, in accordance
with configurations of different electrodes, charge car-
riers can be extracted and conducted to the external
circuit and generate the photocurrent™. Therefore, it
can be seen that high-performance photodetectors re-
quire materials with high u, high absorption coeffi-
cient, and wide spectrum absorption range™.

Graphene, as one of the most important 2D

layered materials, is a honeycomb crystal with a
closed-packed hexagonal structure of single carbon
atom"” !, Graphene has a Dirac conical belt struc-
ture with an ultrahigh x of ~ 1000000 cm® V' s,
which enables graphene having a high carrier collec-
tion rate and fast response time in graphene-based
photodetectors”**"!. Additionally, zero-band gap fea-
ture of graphene allows photo-generated carriers to
transfer from the VB to the CB with nearly zero en-
ergy loss, and in turn fulfills the requirement of wide
spectrum absorption range*!. However, graphene has

™1 in the range

a very low light absorption (2.3%)
from the ultraviolet to near-infrared region, which res-
ults in very fast interaction between light and the mat-
ter'*”! and low detectivity (D) of only 2.2x10° Jones*"
in graphene-based 2D photodetectors.

To increase the D™ of graphene-based photode-

tectors, different photosensitive materials have been
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Fig.2 Detectivity (D") of graphene-based 2D photodetectors based on van der Waals heterostructures (vdWHs) with different photosensitive materials, includ-
[45

1, graphene/SnS,*"), graphene/PtSe,*”), graphene/PtSe,/B-Ga,0,"*"), graphene/PbSe*”), graphene/GaSe ™", graphene/InSe™”,

54] 55]

ing graphene/ReS,
, graphene/WSe,*”, graphene/Bi,Te,*, graphene/HgTe/ graphene”,

graphene/MoS,”**"), graphene/h-BN/MoS,*”), graphene/MoS,/graphene!®!, MoS,/graphene/MoS,*"*), MoS,/h-BN/graphene'®”, graphene/glassy-MoS,*,

[71]

graphene/PbSe/TiO,"", graphene/SnSe,/graphene!™, graphene/p-GaSe/n-InSe!
graphene/InSe/MoS,"*”", MoS,/graphene/WSe, "), graphene/MoTe,*”, graphene/MoTe,/graphene'™”, MoTe, /graphene/SnS,

Table 1 Performance of graphene/photosensitive material-based photodetectors

Device structure A/nm R/(mA-W ™) 7/ms 7/ms D’/Jones Ref.
Graphene/ReS, 550 1.0x10° 30.0 30.0 1.9x10" [45]
Graphene/Sns, f‘g& e }82 - - ?;g;}gii [46]
Graphene/PtSe, 1000 2.2x10° 50.5 373 1.0x107 [47]
Graphene/PtSe,/p-Ga,0, 245 76.2 1.2x10° 0.5 1.0x10" [48]
Graphene/PbSe 1300 6.6%10° 50.0 175.0 1.2x10" [49]
Graphene/GaSe 532 3.5%10° 10.0 10.0 1.1x10' [51]
Graphene/InSe 633 1.0x10° <0.1 <0.1 1.0x10" [52]
Graphene/PbSe/TiO, 350 5.1x107 - - 3.0x10" [50]
Graphene/SnSe,/Graphene 532 1.3x10° 30.2 272 1.2x10" [53]
Graphene/p-GaSe/n-InSe 410 2.1x10* 0.6x107 5.7x107° 2.2x10"2 [54]
Graphene/WSe, 532 3.5x10° 5%107° 3.0x107 1.0x10" [55]
Graphene/Bi, Te, 940 1.0x10° — _ 1.0x10" [56]
Graphene/HgTe/ Graphene 1550 7.0 9.0x107 0.7x107 1.0x10 [57]
Graphene/MoS, 220 3.3x10° - - 1.0x10" [58]
Graphene/MoS, 432 2.2x10° _ _ 3.5x10" [59]
Graphene/MoS, 520 2.1x10° - - 1.5x10" [60]
Graphene/h-BN/MoS, 532 3.6x107 - - 5.9x10" [65]
Graphene/MoS,/Graphene 2503020 géi {82 589.6 - ;gi}g:g [64]
MoS,/Graphene/ MoS, 1503020 - - - 11 (?: 11(())192 [61]
Mos,/Graphene/MoS, g?g H .1802 2.8x10° 47%10° ;;gj}gii [62]
MoS,/h-BN /Graphene f‘20655 i:gi }gi 230.0 2.5%10°7 2.6x10" [66]
Graphene/glassy-MoS, 532 12.3 - - 1.8x10" [63]
Graphene/InSe/MoS, 532 1.1x10 - - 1.1x10" [67]
MoS,/Graphene/WSe, 532 43x10° 5.4x107 3.0x107 22x10" [68]
Graphene/MoTe, o o igj 78.0 37107 ;giig:é [69]
Graphene/MoTe,/Graphene 473 8.7x10° 23.0 1.0x10" [70]

MoTe, /Graphene/SnS, 500 2.6x10° 17.6 72.3 1.0x10" [71]
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composited with graphene to form 2D van der Waals
heterostructures (vdWHs)™* ™. Fig. 2 and Table 1
summarize the performance of graphene-based photo-
detectors based on 2D vdWHs are formed with differ-

ent photosensitive materials, including graphene/
[47,48]

> grap-
[52]

hene/PbSe'***" graphene/GaSe"", graphene/InSe"*”,

[53]

graphene/SnSe,/graphene®™,

ReS,*”), graphene/SnS,*"), graphene/PtSe,

graphene/p-GaSe/n-
InSel, graphene/WSe,””), graphene/Bi,Te,", grap-
hene/HgTe/graphene™”, graphene/MoS,™ **,  grap-
hene/h-BN/MoS,**! graphene/InSe/MoS,"), MoS,/
graphene/WSe,'®”, graphene/MoTe,"”, and MoTe,/
graphene/SnS,"'". As seen in Fig. 2, the graphene/
MoX, vdWH photodetector has a wide absorption
range from the ultraviolet (UV) to the infrared and a
high D" in the visible and infrared wavelength range.
In the UV, the D of graphene/MoS, vdWH photode-
tectors can reach 1.0x10'? Jones. Graphene/MoTe, vd-
WH photodetector has a D" of up to 3.8x10" Jones,
which is six orders of magnitude higher than other
photodetectors. Graphene/PtSe,/f-Ga, O, vdWH pho-
todetector can also detect light in the UV region.
However, its responsivity (R) is low (76.2 mA W) at
245 nm (Table 1). Although the detection capability
of graphene/HgTe/graphene vdWH photodetector can
be extended to the 1 550 nm near-infrared region, its
performance is relatively weak with relatively low R
(7.0 mA W) and D" (1.0x10° Jones) (Table 1). In
contrast, the graphene/MoX, vdWH photodetectors
have a wide spectrum absorption range from deep ul-
traviolet to mid-infrared region and approach the D" as
high as 3.8x10" Jones. In the visible wavelength (1)
region, the D of graphene/MoX, vdWH photodetect-
ors are at least an order of magnitude higher than oth-
er vdWH photodetectors. In the infrared region, the
graphene/PtSe vdWH photodetector has a similar D"
and a relatively longer rise time (z,: 50 ms) and fall
time (zz: 175 ms) which are also shown in Table 1.
This can be attributed to the fact that 2D mono- and
few-layer MoX, materials have high light absorption
coefficient’’”, which perfectly compensates for the
drawbacks of graphene!””. Therefore, MoX, is an ex-

traordinary photosensitive material, and realize wide

spectrum absorption range, high photocurrent and
high responsivity (R) /¥

ility of graphene-based 2D vdWH photodetectors.

, which extends the applicab-

In this review, the advances in graphene/MoX,
vdWH photodetectors are comprehensively over-
viewed. First, fundamental working principles, key
performance indicators, and structures of photodetect-
ors are summarized. Second, material crystal struc-
tures, electronic band structures and their relationship
with photoelectronic performance are analyzed. After
that, preparation methods of graphene/MoX, vdWH
are summarized. In addition, the strategies for improv-
ing the photoelectric performance of graphene/MoX,
vdWH photodetectors are reviewed. Applications of
graphene/MoX, vdWH photodetectors are further
overviewed based on the categorization of photode-
tectors. Finally, the challenges and prospects of
graphene/MoX, vdWH photodetectors are pointed
out.

2 Working principles

2.1 Photocurrent generation
Photocurrent in vdWH photodetectors can be
generated by 3 effects, namely photoconductive

effect’” !, photothermoelectric effect™ *

and photo-
voltaic effect™ ™. Photoconductive effect, which is
also known as photoelectric effect and photosensitiv-
ity effect, is the phenomenon that light causes the con-
ductance change of semiconductor materials (Fig. 3a).
Generally, the work function (W) of graphene (W) is
~4.6 eV, which can be tuned from 3.5 to 5.1 eV by
external electric field or chemical doping™***!. Experi-
mentally, the typical value of the W of MoX, (W) is
5.2-6.1 eV. The W of MoS,, MoSe, and MoTe, are
6.1,5.5 and 5.2 eV, respectively. Therefore, a metal-
lic or intrinsic N-doped graphene contact with n-type
MoX, (at this time W, < W) would form ohmic con-
tact (upper part of Fig. 3a) at the interface where elec-
trons flow from the graphene into the lower energy
states in MoX,. When a bias voltage is applied to this
graphene/MoX, junction under light, electrons can
easily flow between graphene and MoX, depending

on the direction of the bias, exhibiting a photocon-
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(a) Interface: Ohmic contact (b) Interface: p-n junction (c) Interface: Schottky barrier
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Fig.3 Schematic band diagram of (a) photoconductive effect, (b) photovoltaic effect and (c) photothermoelectric effect at the graphene/molybdenum dihalide

(MoX,, X= S, Se and Te) interface. Upper and lower diagram represent the interface in the dark state and under the light, respectively

ductive effect (lower part of Fig. 3a), which is also the
most common working mechanism of graphene/MoX,
vdWH photodetectors’”> ™. Under this working prin-
ciple, the device generally shows a large photocon-
ductive gain. At the same time, it exhibits a large
noise due to a large dark current (/), which results in a
low D"

Photovoltaic effect refers to the phenomenon that
light causes a potential difference between an uneven
semiconductor, or between different parts of a semi-
conductor and a metal in Fig. 3b. Unlike ohmic con-
tacts, when an n-type graphene is contacted with p-
doped MoX, (W, < W) to form a heterojunction,
holes can diffuse from p-MoX, into graphene while
electrons can diffuse from graphene into p-MoX, (up-
per part of Fig. 3b), which can cause the bands in p-
MoX, to bend downward at the interface to form a p-n
junction with a built-in potential barrier (or built-in
electric field £). Such graphene/MoX, p-n heterojunc-
tions exhibit the photovoltaic effect to enable self-
powered photodetection under no bias, and also en-
able efficient exciton separation, which simultan-
eously leads to large R and D" by applying a positive
bias under light.

Photothermoelectric effect is a new photoelectric

response mechanism, in which the hot carrier concen-
tration and temperature gradient generated in the pho-
toexcited materials can drive the carrier movement to
form photocurrent as illustrated in Fig. 3c. When the
W of p-doped graphene is larger than that of MoX,
(W, > W), the contact between graphene and MoX,
will form a Schottky barrier (upper part in Fig. 3c),
which is similar to the case that a semiconductor con-
tacts with a metal. Basically, photons are absorbed by
graphene to form electron-hole pairs during this pro-
cess (lower part in Fig. 3c). These electron-hole pairs
are rapidly balanced to form a hot carrier distribution,
where a temperature gradient will form accordingly.
As a result, the carrier energy is higher than the Schot-
tky barrier formed at the graphene and MoX, inter-
face, which can increase the carrier transfer rate
MoX,, and form

between  graphene and

photocurrent™®.
2.2 Key performance indicators

High performance photodetectors require high
response efficiency, fast response speed, and high re-
sponse sensitivity. The R represents for the response

efficiency of the overall photodetector, expressed by:
Photocurrent I, — I

= Q)

~ Incident light power P,

where [, is the light-on current, 7 is the dark current,
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and P,, is the incident light power. Based on Eq. (1),
when the P, is a constant, the increase of photocur-
rent can induce the increase of R. G is photoconduct-
ive gain that is used to evaluate the efficiency of gen-
erating multiple carriers by a single incident photon,

which can be defined as the capability to generate

multiple carrier by a single incident photon®", and ex-
pressed as:
Tlife
G=—— 2
Tiransit ( )

where 7, is the lifetime of photoexciton, and 7, is

ransit

the transit time to through channel. The 7, is de-

pendent on the bias voltage (V;,,,) applied at channel

[94].

and the length of the channel (L), and given by
LZ
Tiransit = m

Response speed can be evaluated by the response time

)

(), where a lower 7 indicates faster response speed.
The 7 is the sum of 7, and 7. 7, (z;) is defined as the
time interval required for the response to rise (decay)
from 10% (90%) to 90% (10%) of the net photocur-
rent peak. In photodetectors with fast response speed,
photogenerated electron-hole pairs can be driven by
the internal electric field to separate rapidly, which
will induce low R as restricted by the maximum gain
of unity™.

Response sensitivity can be indexed by the D,
external quantum efficiency (EQE), and internal
quantum efficiency (IQF). D" represents the sensitiv-
ity of photodetectors to weak signal, and can be ex-

pressed as:

_ VAB
~ NEP
where 4 is the effective area of photoelectric device, B

s

“4)

(a) Incident light

UL 2=

Gate
MoX,

— Semiconducting film =

Substrate

is the electrical bandwidth, and NEP is the noise equi-
valent power. NEP is the minimum light signal power
that can be detected from the total noise, which can be
further categorized into thermal noise, shot noise and

flicker noise. The NEP can be expressed as:

Liois
NEP: noise 5
R (6))

where I

width. From Eq. (4) and Eq. (5), it can be seen that the
R and D" are proportional®. EQE can reflect the

is the noise current spectra at 1 Hz band-

sensitivity of photodetectors to collect photons. EQFE
is the ratio of the number of effective photoinduced
carriers to the number of incident photons””, which

can be expressed as:
(Ion - Ioff)/e _ Rhc
P./hv  ed

where e is the elementary charge, / is Planck’s con-

EQE = (©6)

stant, v is the frequency of incident light, ¢ is the
speed of incident light, and A is the wavelength of in-
cident light. Similarly, /QF can reflect the sensitivity
of photodetectors to convert light into electrical en-
ergy. IQF is the ratio of the number of the electron-
hole pairs which contribute to the photocurrent to the
number of absorbed photons by the detector, and can

be expressed as:

EQE

10E = —— (7)

where 7 is the light absorption efficiency.

3 Photodetector structure

Fig. 4 shows the schematic structures of (a) later-
al and (b) vertical graphene/MoX, vdWH photodetect-

ors, which include a substrate (mesoporous Si with an

(b) Incident light

/v

Light absorption
layer

Drain

MoX,

R ——
Si
Back gate

\

Fig. 4 Schematic structures of (a) lateral and (b) vertical graphene/molybdenum dihalide (MoX,, X=S, Se and Te)

van der Waals heterostructure photodetectors
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additional amorphous bridging SiO, layer), a semicon-
ducting film (graphene), a light absorption layer
(MoX,), and three gate/source/drain electrodes. In a
graphene/MoX, vdWH photodetectors, the amorph-
ous bridging SiO, layer is conducive to the deposition
of graphene layers and can contribute to good struc-
tural stability”™. High u of graphene makes it a good
candidate for the semiconducting film. Meanwhile,
high light absorption coefficient of MoX, makes it a

{21 The source/drain

suitable light absorption layer
electrodes are typical Au/Ti or Au/Cr electrodes that
are in direct and close contact with the graphene semi-
conducting film. The source and drain are in contact
with graphene in a lateral structured graphene/MoX,
vdWH photodetector (Fig. 4a). The source and drain
are in contact with graphene and MoX,, respectively,
in a vertical heterojunction structured graphene/MoX,
vdWH photodetector (Fig. 4b)“”\. The gate electrode
can apply a vertical electric field to the graphene
channel through a layer of insulating medium!*”". The
photoelectronic performance is dominated by the

structure and properties of the graphene/MoX, vdWH.

(a) (b)

Graphene

@ Mo
%—’ o X

c

(d) (e)

Graphene

R
A soamit

T,

4  Fundamentals of graphene/MoX, vd-
WH

4.1 Crystal structures

Graphene, as the semiconducting layer of
graphene/MoX, vdWH photodetectors, is a hexagonal
honeycomb monolayer carbon crystal. Each protocell
of graphene contains 2 carbon atoms. The distance
between adjacent carbon atoms is 1.42 A. Each car-
bon atom in graphene has 4 valence electrons. Three
of the electrons form 3 bonds connecting 3 adjacent
carbon atoms by sp® hybridization. The remaining or-
bital electrons of adjacent carbon atoms form a large
bond, which can move freely and contribute to the
high u of graphene!"! (Fig. 5a).

MoX,, as the light absorption layer for
graphene/MoX, vdWH photodetectors, is also a 2D
layered material, in which each unit consists of 2 X
atoms and one Mo atom. The MoX, layers are con-
nected by weak van der Waals (vdWs) force, which
make MoX, easily stripped into mono- or few-layer'””!

(Fig. 5b). Mono- or few-layer MoX, mainly includes

© 2H 1T

QO O Q 0O
%, X

ae~ bo C) ®)

®

Fig. 5 (a) Graphene hexagonal honeycomb crystal structure. (b) 3D representation of the structure of molybdenum dihalide (MoX,, X=S, Se and Te).

(c) Crystal structures of MoX,: including 2H and 1 T polytype. (d) Crystal structure of graphene/MoX, van der Waals heterostructure (vdWH). Copyright, 2015,

Elsevier!'®

1. (e) Electron band structures of graphene, (f) MoS, and (g) graphene/MoS, vdWH at the equilibrium interfacial distance. The Fermi level (E;) is set

to zero and marked by green dotted lines. Black and color lines respectively for generalized gradient approximation of Per dew, Burke, and Engenho and
HSE06 methods. Copyright, 2016, Royal Society of Chemistry"'*!
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the trigonal prismatic (1H) phase and the octahedral
(1T) phase. As shown in Fig. 5c, in both 1H and 1T
phases, each Mo atom is surrounded by 6 X atoms.
With the offset of X atoms in the upper and lower
planes, the 1H phase is arranged in a prism-like co-
ordination. Meanwhile, the 1T phase is arranged in an
octahedron coordination. The different atomic ar-
rangements in 1H and 1T phases are dominated by the
atom count of the 4d orbitals of Mo, where filled or-
bitals induce semiconducting behavior and the forma-
tion of 1H-phase MoX,. And partially filled 4d orbit-
als of Mo induce metallic behavior the formation of
metallic 1T-phase MoX,'"”. Therefore, the metallic
1T-phase MoX, exhibits high x due to partial filling of
the Mo 4d orbitals. In contrast, the 1H-phase MoX,
exhibits high photon absorption derived from the
semiconducting behavior, which can effectively im-
prove the performance of photodetectors'' "),

2D graphene and MoX, can easily form a vdWH
by forming weak vdWs force between the 2D
graphene layers and 2D mono- or few-MoX, layers
(Fig. 5d). Such a vdWH can achieve charge transfer
and separation between layers. Graphene/MoX, vd-
WH can realize tight connection between the
graphene and MoX, layers and contribute to suitable
band manipulation at the graphene/MoX, interfaces.
Therefore, graphene/MoX, vdWH can realize effect-
ive utilization of the unique optoelectrical properties
of graphene and MoX,, and have demonstrated good
optical, electrical, thermal, and electromagnetic prop-
erties, which can be widely used in the field of opto-
electronics.
4.2 Electronic band structures

As illustrated in Fig. Se, the band structure of
graphene satisfies the linear dispersion relationship,
where the CB and VB meet at the Dirac point and
form a zero-band-gap band structure!”’. Zero-band
gap graphene has the advantages of high x, wide spec-
tral absorption range, and high transmittance.
However, the high transmittance results in high dark
current in graphene-based photodetectors'*, which
can be overcome by forming graphene/MoX, vdWH.

Generally, monolayer MoX, has a direct bandgap and

high absorption coefficient. Taking monolayer MoS,,
as an example as illustrated in Fig. 5f, monolayer
MoS, is a direct band-gap semiconductor with a
bandgap of ~1.9 eV, leading to a high absorption
coefficient of 2.8x10° cm """, Fig. 5g schematically
shows the electronic band structure of a graphene/
MoS, vdWH, which combines the electronic band
structure features of both graphene and MoS,, leading
to and  absorption

simultaneously  high u

coefficient!'"”,

5  Preparation methods of graphene/
MoX, vdWH

Graphene/MoX, vdWH can be successfully pre-

pared by wet transfer!'””), dry transfer!'*"

[109,110]

, inkjet print-
ing and successive deposition''''/(Fig. 6). As
summarized in Table 2, wet transfer methods, as the
most widely used preparation methods, can induce
high R (4.3x10° mAW ') and D’(3.8x10" Jones).
During wet transfer processes, polymers (such as
polymethyl methacrylate (PMMA)""?, poly(L-lactic

[114]

acid)!'"!, polystyrene and polyvinyl alcohol) are
typically employed as a protective layer for 2D mater-
ials. PMMA is currently the most widely used protect-
ive layer in the laboratory because it is easy to fabric-

ate and remove!''?

. The schematic process of wet
transfer is presented in Fig. 6a, where the 2D material
grown on the metal substrate is firstly spin-coated
with PMMA film. Then, it is heated for the purpose of
curing, and placed into the etching solution to etch the
After further drying, the 2D

materia/PMMA composite will be transferred on the

metal substrate.

@1) p  Wet transfer (b) Dry transfer )
';r-Graphene/MoXZ MoX, /,/

— Polymer Viscous polymer” =
\_ ubstrate Wil )

: T \ Graphene/MoX;
(© Inkjet printing & 7(d) Successive deposition\
MoX;  Graphene , MoX,
Graphene~
~

g Substrate Substrate )

Fig. 6 Preparation methods of graphene/molybdenum dihalide (MoX,, X=

S, Se and Te) van der Waals heterostructures
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Table 2 Synthesis and performance of typical graphene/molybdenum dihalide (MoX,, X =S, Se and Te) van der Waals
heterostructure (vdWH) photodetectors

Device structure Synthesis of graphene/MoX, ~ A/nm  RAmA-W™')  D"/Jones 7. /ms 7./ms EQE Ref.
h-BN/MoTe,/Graphene /SnS,/h-BN Dry transfer 500 2.6x10° 1.0x10" 17.6 72.3 10°t0 10°  [71]
MoS,/h-BN /Graphene Dry transfer 405 1.8x10° 2.6x10" 230 250.0 - [66]
Graphene/InSe/MoS, Dry transfer 532 110 1.1x10"° - - 25.7% [67]
9
MoS,/Graphene/MoS, Dry transfer 1503020 - 11 (?: 11 glz - - 55% [61]
Graphene/MoTe,/Graphene Dry transfer 473 8.7x10" 1.0x10" - 23.0 - [70]
Graphene/MoTe, Wet transfer 1064 9.7x10° 1.6x10" 78 375.0 - [53]
808 2.2x10* 3.8x10"
MoS,/Graphene/MoS, Wet transfer 1550 10.6 1.8x10  2.8x10°  4.7x107 - [62]
1310 11.8 2.0x10"
MoS,/Graphene/WSe, Wet transfer 532 4.3x10° 22x10”  53x107  3.0x107 1x10°% [68]
1265 1.5x10°
Graphene/MoTe, Wet transfer 1300 50 - 19 - 20% [122]
1330 20
1064 110 - o 12.9%
Graphene/MoTe,/Graphene Wet transfer 473 205 - 2.4x10 4.6x10 53.8% [123]
6.6x10'
Graphene/MoS,/WS, Wet transfer 145(1.00 1 71 10* - 21.9 7.0 13.7% [124]
532 4.1x10° 3.2x10" 9.7x10%%
Graphene/MoS,/Graphene Wet transfer 2000 3.8x10° 2'9x10" 589.6 23x10'%  L64]
Graphene/MoS, Wet transfer 220 3.4x10° 1.0x10" - - 1.8x10* [58]
Graphene/MoS, Wet transfer 520 2.1x10° 1.5x10'° - - - [60]
Graphene/h-BN/MoS, Wet transfer 532 3.6x10° 5.9x10" - - 80% [65]
Graphene/glassy-Mo$S, Wet transfer 532 12.3 1.8x10'° - - - [63]
Graphene/MoS, Inkjet printing 540 8.4x10° - 20 30 - [125]
Graphene/MoS, Successive deposition 532 2.4x10° - - - - [111]
Graphene/MoS, Successive deposition 432 2.2x10° 3.5x10" - - - [59]

target substrate, where the PMMA can be removed by

51 However, the introduction of

acetone cleaning
PMMA inevitably deteriorates the cleanliness of the
vdWs interface, increases the complexity, and slows
down the process of spin coating and heating''"®’.

Dry transfer methods rely on viscous polymers to
transfer an arbitrary 2D material to the surface of an-
other one (Fig. 6b). In dry transfer processes, com-
plex sub-steps (rotating coating and heating) can be
excluded, and corresponding interface contamination
can be avoided. Although this dry transfer method is
very popular in experimental research, it is difficult to
apply to large-area 2D materials, and also meet the re-
quirements of mass-fabricated devices. Moreover,
these dry transfer process induces additional external
of 2D

materials!"'”. Therefore, it is very important to choose

strain and influences the uniformity
appropriate polymer media and avoid significant in-
fluence on
graphene/MoX, vdWH!'.

Other than wet and dry transfer methods, inkjet

the uniformity of as-prepared 2D

printing can be used to fabricate graphene/MoX, vd-
WH by directly printing the materials layer by layer
(Fig. 6¢), resulting in the clean vdWs interface and the
high R, D"and low z. However, to facilitate printing,
2D nanosheets dispersed in inks need to be as small as
possible. The small surface area of 2D nanosheets dis-
persed in the ink can introduce dense grain boundar-
ies in the film, hinder the transport of charge carriers,
and reduce the R of photodetectors'''”.

Successive deposition is cycling the deposition
for twice to prepare heterostructures (Fig. 6d). Depos-
ition methods, including chemical vapor deposition

[119]

(CVD)!"¥1 " physical vapor deposition

[120]

, electron

beam evaporation (2

, and magnetron sputtering
can be used to effectively prepare large area and high
quality 2D materials. Among various deposition meth-
ods, CVD method is the most used due to its simpli-
city, fast growth rate, and cost-effectiveness. CVD is a
process that uses gaseous substances to react in the
gas phase or gas-solid interface to form solid-state

[118]

products" ™. However, during CVD process, growth
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temperature and precursors have significant influence

on the size and quality of the products.

6 Performance-engineering strategies

6.1 Interface cleaning

A clean interface in heterostructures can reduce
the amount of charge traps, contribute to efficient
transfer of photo-generated carriers, enhance the pho-
tocurrent, and thus improve the R of the photodetect-
ors. Facile wet transfer methods are widely used for
the preparation of graphene/MoX, vdWH, which inev-
itably produce contamination at the interface in the
graphene/MoX,. Fig. 7a is a transmission electron mi-
croscope (TEM) image showing the interface in a typ-
ical graphene/MoS, vdWH. Apparently, the trans-
ferred graphene is not uniform and can only partially
cover the MoX,, where the rest of the interface is con-

taminated. To solve this problem, Liu et al."** used an

(b)

©

(NH,),MoS,

Metal-free CVD
grown graphene

inkjet printing method to prepare a graphene/MoS,
vdWH as schematically shown in Fig. 7b. This pro-
cess is transfer-free and can maintain a clean inter-
face between graphene and MoS,. Fig. 7c shows low-
magnification atomic force microscope (AFM) image
of the 2D film of graphene/MoS, vdWH, where over
80% of MoS, layer (thickness of ~ 0.7 nm) is fully
covered by graphene. As shown in Fig. 7d, the clean
vdWs interface helps to facilitate the transfer of pho-
togenerated holes from MoS, to graphene. The photo-
generated holes transferred into graphene can be driv-
en by the applied bias voltage (V) to cycle through
the external circuit many times until they combine
with the photogenerated electrons in the MoS, layer,
resulting in a highly R photodetector. In Fig. 7e, the
photocurrent of transfer-free graphene/MoS, vdWH
photodetector is increased by about 22 times com-

pared with that prepared by the wet transfer method

Graphene

MoS, sheet

[T R

Photocurrent/uA
N

£
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= o
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Fig. 7 (a) Transmission electron microscope (TEM) image of the transferred graphene/MoS, van der Waals heterostructure (vdWH. Copyright, 2017, Americ-
an Chemical Society)!'*”). (b) Schematic fabrication process of the transfer-free graphene/MoS, vdWH. (c) Atomic force microscope (AFM) image of the trans-
fer-free graphene/MoS, vdWH. Copyright, 2017, American Chemical Society'*"". (d) Schematic diagram of the transfer-free graphene/MoS, interface band.

Copyright, 2017, American Chemical Society!*”. (¢) Comparison of time-dependent photocurrent of the transfer-free graphene/MoS, and transferred

graphene/MoS,. Copyright, 2017, American Chemical Society!*. (f) Comparison of responsivity (R) of the transfer-free graphene/MoS, and trans-free

MoS,/graphene/SiC. Copyright, 2017, American Chemical Society'*!
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under the same condition due to a clean
graphene/MoS, vdWs interface. Correspondingly, the
R of transfer-free graphene/MoS, vdWH prepared by
inkjet printing with a clean vdWs interface is 20 times
higher than that of transfer-free MoS,/graphene/SiC
(Fig. 7f). After introducing a clean vdWs interface, a
high R of 835 mA W' has been approached in the
transfer-free graphene/MoS, vdWH photodetector.
6.2 Blocking interlayer coupling

During separation process of photogenerated
electron-hole pairs, photo-generated holes can be eas-
ily consumed by interlayer coupling formed during
the graphene and MoX, stacking process''’”'*". Tak-
ing a graphene/MoS, vdWH photodetector as an ex-
ample, as schematically shown in Fig. 8a, blocking
the interlayer coupling can avoid the consumption of
diffusion of photogenerated holes into graphene, ef-
fectively accelerate carrier migration and enhance the
photocurrent of graphene/MoX, vdWH. To realize

1.1V introduced an atomically thin

this purpose, Li et a
hexagonal boron nitride (h-BN) film

graphene/MoS, interface in Fig. 8b. Fig. 8c shows the

into the

photoluminescence (PL) intensities of pristine MoS,,
graphene/MoS, and graphene/MoS,/h-BN vdWH as a
function of the incident light wavelength. As can be
seen, after forming graphene/MoS, vdWH, due to the
interlayer coupling at graphene/MoS, vdWs interface,
the PL peak intensity is reduced. After further inser-
tion of h-BN, the interlayer coupling between
graphene and MoS, is blocked, leading to an in-
creased PL peak intensity. This is mainly because the
interlayer carrier recombination at the graphene/MoS,
interface is effectively blocked by the inserted h-BN.
Meanwhile, the photogenerated holes can achieve in-
terlayer transport through quantum tunneling, contrib-
uting to the effective restoration of the photovoltaic
effect. Fig. 8d compares I-V,q curves of the
MoS,/graphene and MoS,/h-BN/graphene vdWH pho-
todetectors under dark and illumination conditions.
Impressively, the photocurrent increases significantly
after the insertion of h-BN due to the restoration of the
photovoltaic effect at the Vg of 0 V, while the elec-
trical behaviors of the photodetectors are similar be-
fore and after insertion of h-BN at higher Vs The
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Fig. 8

(a) Schematic band diagram of graphene/MoS,. (b) Schematic of the graphene/MoS,/h-BN van der Waals heterostructure (vdWH) device. Copyright,

2018, Elsevier®, (c) Comparison of the photoluminescence (PL) intensities of pristine MoS,, graphene/MoS, and graphene/MoS,/h-BN. Copyright, 2018, El-

sevier'™. (d) Comparison of current- bias voltage (I-V,) curves of the graphene/MoS, and graphene/MoS,/h-BN vdWH photodetectors in dark and light illu-

mination. (e) Responsivity (R) of photodetector versus V;s. Copyright, 2018, Elsevier™®”. (f) Noise equivalent power (VEP) and detectivity (D)

of the graphene/MoS, photodetector versus Vg
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restoration of photovoltaic effect is conducive to the shown in Fig. 9a. For example, Li et al.* used asym-

improvement of response efficiency and response
sensitivity of a photodetector. As shown in Fig. 8e,
under positive Vg, the photocurrent mainly comes
from the photoconductive effect. At zero and negat-
ive Vpg, the electric field in MoS,/h-BN/graphene vd-
WH photodetector generates many photo-generated
carriers, contributing to a high R. Based on Eq. (4)
and Eq. (3), the increase in R leads to a decrease in
NEP and an increase in D". Compared with photode-
tectors working under negative Vg, NEP and corres-
ponding D" are significantly improved under zero Vp,
as shown in Fig. 8f. Obviously, inserting h-BN to
block interlayer coupling can effectively improve the
R and D" of the photodetectors.
6.3 Internal electric field construction

Internal electric field can drive the photogener-
ated electron-hole pairs in MoX, through the graphene
channel, improve the value of ¢ and enhance the pho-

[127]

tocurrent of the photodetectors as schematically

(@)

metric metal contacts (titanium and palladium) to
provide a strong internal electric field as compared
with symmetric metal contacts. In Fig. 9b, when sym-
metric metal contacts are used, the photocurrent and
dark current curves intersect at the point where V=
0 mV, indicating that there is no internal electric field.
In contrast, while asymmetric metal contacts are used,
a strong internal electric field of 110 mV can be ob-
served, as indicated by the shift of zero photocurrent
point in Fig. 9c. The large internal electric field res-
ults in a high photocurrent ( ~ 0.225 pA) and corres-
pondingly an increased R (~3 A/W) as shown in
Fig. 9d. While the detector is operated with asymmet-
ric metal contacts at Vpg=0 V, a low dark current of
only 0.9 nA (as compared with 17.25 pA of the photo-
detector with symmetric metal contacts) and a high
1.,/1  ratio of up to 1428 (as compared with 1.11 of
the photodetector with symmetric metal contacts) can
be obtained (Fig. 9¢). An enlargement of Fig. 9e
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Fig. 9 (a) Energy diagram of the graphene/molybdenum dihalide (MoX,, X= S, Se and Te) hybrid photodetector with asymmetry metal contact under light ir-

radiation. Ay, and Ag; represent the difference between the Dirac point energy and the Fermi level (£;) in palladium- and titanium-doped graphene, respect-

ively. Copyright, 2020, American Chemical Society™. (b) Difference of current (/) between Dirac point energy and E; in graphene under symmetric metal con-

tact. (c) Difference of I between Dirac point energy and E; in graphene under asymmetry metal contact. (d) Curve of photocurrent and responsivity (R) with

gate voltage under asymmetric metal contact. (¢) Photocurrent response of graphene/MoS, phototransistor with asymmetric metal contact. Copyright, 2020,

American Chemical Society™. (f) Corresponding enlarged figures of (¢). Copyright, 2020, American Chemical Society™’
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shows that the 7, of the photodetector is only 0.13 ms
(Fig. 9f), which is 217 times smaller than that of the
photodetector with symmetric metal contacts.
6.4 Schottky barrier removal

As the work function of graphene (4.3 eV) is
close to the electron affinity of MoS, (4.2 eV), a
Schottky barrier exists at the graphene/MoX, inter-
face of graphene/MoX, vdWH!”!. Although in the
mentioned photothermoelectric effect, the presence of
Schottky barrier in the contact of graphene with MoX,
does not cause obstacles to emission of hot electrons,
the Schottky barrier will prevent the migration of
photo-generated carriers in the photoconductive and
photovoltaic devices. Therefore, reducing the Schot-
tky barrier can allow more photo-generated holes
transit from MoX, to graphene and generate higher
photocurrent!*”. Lee et al.”” fabricated a gate using
graphene, which can modulate the Schottky barrier by
adjusting the gate bias (V) as schematically shown in
Fig. 10" Fig. 10b schematically shows that upon il-
lumination, the photo-generated electrons can further

raise the E; of graphene, resulting in a lower Schottky

(a) (b)

h-BN

Graphene

-18 b Dark

® Electron

(Source and drain)

(d)

barrier in the graphene/MoS, vdWH. While applying
high voltage on the structure, the Schottky barrier can
be measured by the Fowler-Nordheim tunneling
(FNT) model, which can be expressed as!*":
AgmVig o [—81: V2m ¢l d
8nhpspud*m* 3hqVps

Ieny =

} ®)

where 4, g, m, h, ¢spy, d, m" are effective contact area,
electron charge, free electron mass, Planck constant,
Schottky barrier height, barrier width, effective elec-
tron mass, respectively. For ease of calculation, Eq.
(8) can then be converted into

1(1_ ) _ ln( Ag'mV )_ 87 V2 g1 d

Vi 8nh¢spud*m’ 3hgVps

Fig. 10c presents the variation curve of In(1/Vys’)
with 1/V,s, where the height of the Schottky barrier
can be evaluated by the negative slope. Obviously, the

®

effective Schottky barrier disappears when V, ;= -3 V
at the incident power of 0.14 uW. When the positive
gate bias (V) is sufficiently high compared with the
threshold voltage (V,,), the graphene is doped by the
photo-generated hole (Fig. 10d). However, since the

Schottky barrier has been removed, the photocurrent
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Fig. 10 (a) Schematic image of the MoS, photodetector with graphene gate electrode. Copyright, 2020, American Chemical Society”™". (b) Band diagram of

vertical direction of the device (gate bias (V) << threshold voltage (V). (c) Fowler-Nordheim tunneling (FNT) plots at different incident powers. (d) Band

diagram of vertical direction of the device (V,>> V). (€) Responsivity (R) depending on effective incident power at different V. Copyright, 2020, American

Chemical Society™. (f) Detectivity (D) depending on effective incident power at different V.. Copyright, 2020, American Chemical Society

[59]



© 452 - oAl K

)

B (H3E) 39 4%

can flow smoothly, contributing to high R and D".
Fig. 10e and f compare the changes in R and D" at dif-
ferent V, and incident optical powers. When the V is
in the range of —2 to 3 V, the R and D" decreases with
increasing the incident power. However, when the V,
is in the range of —6 to —3 V, the R and D" increases
with increasing the incident power. Under a fixed in-
cident power, with increasing the V,, the R and D’
also The R and D" can reach 2.2x
10° mA W' and 3.5x10" Jones, respectively. There-

fore, reducing the Schottky barrier can effectively

increase.

boost the migration of photogenerated holes and en-
hance photocurrent, R and D’ of a photodetector.

7 Conclusions and outlook

Graphene/MoX, vdWH photodetectors simultan-
eously possess high x, wide spectral absorption range,
and high contact quality with the electrodes, which
has been widely applied in modern electronics. In this
paper, a comprehensive review of graphene/MoX, vd-
WH photodetectors are presented. After introducing
the fundamental principles, key performance indicat-
ors and structure of corresponding graphene/MoX,
vdWH photodetectors, the of the
graphene/MoX, vdWH photodetector is summarized.

fundamentals

Then, typical preparation methods of graphene/MoX,
vdWHs are summarized, including wet transfer, dry
transfer, inkjet printing and successive deposition
methods, with corresponding performance discussion.
Among these methods, wet transfer is the most com-
monly used one, but this method inevitably leads to
contamination of the vdWs interface. Dry transfer and
inkjet printing methods can keep the vdWs interface
clean, but correspondingly introduce external strains
and grain boundaries that reduce the performance of
the photodetector. Successive deposition methods can
maintain the cleanliness of the vdWs interface without
introducing external strains and grain boundaries by
avoiding the transfer process of graphene. However, it
is complicated, time-consuming, and costly. Finally,
the strategies for regulating the performance of
vdWH photodetectors

viewed from 4 aspects: interface cleaning, blocking

graphene/MoX, are  over-

interlayer coupling, internal electric field construction
and Schottky barrier removal. Interface cleaning and
internal electric field construction facilitates the trans-
fer of photogenerated carriers to improve photodetect-
or performance. Blocking interlayer coupling and
Schottky barrier removal help to avoid the consump-
tion of photogenerated holes thus accelerating x and
enhancing photocurrent.

With the significant development of photodetect-
ors, including both preparation methodologies and
performance enhancement strategies, a high R of
6.6x10"° mA/W has been approached in a graphene/
MoS,/WS, vdWH photodetector'**. Additionally, D"
has also approached as high as 3.8x10"° Jones, and the
7 has reduced to as low as 0.0494 ms in a MoS,/
graphene/MoS, vdWH photodetector®”.
some key challenges remain to be further overcome:

However,

(1) From the performance viewpoint, it is of
great significance to approach high response effi-
ciency, high response sensitivity, and fast response
speed to meet the needs of different applications. For
example, high R plays an important role in the applic-
ation of imaging, which also requires low NEP and
low energy consumption.

(2) High quality graphene is foundation for high
sensitivity photodetector. High-quality (device-qual-
ity) graphene refers to monolayer or few layers
graphene with low roughness, defect-free and high
purity. However, graphene in photodetectors is mostly
prepared by wet transfer and dry transfer methods,
where organic residue or other contaminants are inev-
itable, leading to low quality of graphene. Therefore,
the u of graphene in practical device applications is
relatively low, resulting in low sensitivity and high-
power consumption. To address these issues, more fa-
cile, and cost-effective inkjet printing and successive
deposition are worth investigating to prepare high-per-
formance graphene/MoX, vdWH photodetectors.

(3) Maintaining the vdWH interface clean is ne-
cessary to improve the performance of photodetectors.
During the current assembly process, the residue con-
tamination of the interface affects the generation of
excitons and the transport of carriers, which leads to

the degradation of the detector performance. Al-
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though the inkjet printing method can effectively ad-
dress this problem, the introduced dense grain bound-
aries hinder the transport of charge carriers and re-
duce the performance of the photodetector. Therefore,
searching new appropriate way to maintain clean vd-
WH interface remains a significant challenge.

(4) 2D materials tend to adsorb water and oxy-
gen molecules in air, especially compounds of Se and
Te, which deteriorates the performance of photode-
tectors, for example, reducing their response speed
and stability. It is therefore important and urgent for
future practical applications to seek a suitable pack-
aging materials and process for 2D photodetection
devices in order to ensure the reliability of the devices

without compromising their performance.
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