留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
高级检索
优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
多孔炭复合V2O3纳米材料用于锂离子电容器的研究
任晓龙, 艾德生, 吕瑞涛, 康飞宇, 黄正宏
当前状态:  doi: 10.1016/S1872-5805(21)60070-7
摘要(66) HTML(1) PDF(3)
摘要:
以NaCl为模板、结合冷冻干燥技术合成了多孔碳复合V2O3纳米材料,通过研究其用作锂离子电池负极材料的动力学特征,并与商业化活性炭构建锂离子电容器,研究其电化学性能。结果表明,多孔炭复合V2O3纳米材料具有赝电容行为,所构建的锂离子电容器同时具有高能量、高功率和长效循环稳定性,是一种很有前景的锂离子电容器负极材料。
Structure and Electrochemical properties of coconut shell-based hard carbon as anode materials for potassium ion batteries
HUANG Tao, PENG Da-chun, CHEN Zui, XIA Xiao-hong, CHEN Yu-xi, LIU Hong-bo
当前状态:  doi: 10.1016/S1872-5805(21)60069-0
摘要(6) HTML(2) PDF(1)
摘要:
Biomorphic hard carbon recently attracted widely interest as anode materials for potassium ion batteries (PIBs) owing to their high reversible capacity, but high preparation cost and poor cycle stability significantly hinder its practical application. In this study, coconut shell-derived hard carbon (CSHC) was prepared from waste biomass coconut shell using a one-step carbonization method, which was further used as anode materials for potassium ion batteries. The effects of carbonization temperature on the microstructure and electrochemical properties of the CSHC materials were investigated by X-ray diffraction, nitrogen adsorption-desorption isotherms, Raman spectroscopy, scanning electron microscope, transmission electron microscope, and cyclic voltammetry, etc. The results suggested that the coconut shell hard carbon carbonized at 1 000 °C (CSHC-10) possessed suitable graphite microcrystallines size, pore structure and surface defect content, which exhibited the best electrochemical performance. Specifically, CSHC-10 presented a high reversible specific capacity of 254 mAh·g−1 at 30 mA·g−1 with an initial Coulombic efficiency of 75.0%, and the capacity retention was 87.5% after 100 cycles and 75.9% after 400 cycles at 100 mA·g−1. The CSHC with high capacity and good cycling stability demonstrates to be an excellent potassium storage material.
TiC-modified CNTs reinforced isotropic graphite fabricated by mesocarbon microbead
LIN Xiang-bao, CHEN Hui, WU Jing, WU Zhi-gang, LI Run, LIU Hong-bo
当前状态:  doi: 10.1016/S1872-5805(21)60067-7
摘要(7) HTML(4) PDF(1)
摘要:
In this work, multi-walled carbon nanotubes (CNTs) were modified by nano-TiC using a non-pressure spark plasma sintering technology. TiC-modified carbon nanotubes (T-CNTs) were doped into mesocarbon microbead (MCMB) to prepare high performance isostatically pressed graphite materials. The structures of T-CNTs and as prepared isotropic graphite material were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. The mechanical properties and thermal properties of isotropic graphite reinforced by T-CNTs were measured through micro-controlled electronic universal testing machine, laser thermal conductivity meter and thermal expansion coefficient meter. The results show that nano-TiC is successfully grown on the surface of CNTs. Meanwhile, compared with the isotropic graphite prepared by MCMB without T-CNTs, the isotropic graphite with different amounts of T-CNTs has a significant improvement in physical properties (density, open porosity and volume shrinkage). The flexural strength and the degree of graphitization of isotropic graphite with T-CNTs is increased by 70% and 10% respectively, the thermal properties are also improved to some degree.
Carbon materials for solar-powered seawater desalination
WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, SUN You-kun, XUE Yu-hua, XIAO Shu-ning, YANG Jun-he
当前状态:  doi: 10.1016/S1872-5805(21)60066-5
摘要(23) HTML(4) PDF(8)
摘要:
Carbon materials are widely used in solar-powered seawater desalination (SSD) and are attracting a lot of attention today. In this mini-review, the recent developments of functional carbon material solar absorbers in SSD are categorized and discussed, including the analysis of the photothermal conversion mechanism, the application and the water management of carbon materials. The important contribution of functional carbon materials in SSD is highlighted, including excellent light absorption, high photothermal conversion efficiency, the balance of water transfer and salt resistance. In addition, the key challenges of functional carbon materials in SSD applications are also discussed.
非层状过渡金属碳化物在能源存储与转换中的应用进展
GAO Yin-hong, NAN Xu, YANG Yao, SUN Bing, XU Wen-li, Wandji Djouonkep Lesly Dasilva, LI Xuan-ke, LI Yan-jun, ZHANG Qin
当前状态:  doi: 10.1016/S1872-5805(21)60065-3
摘要(38) HTML(17) PDF(8)
摘要:
Holding diverse and tunable morphologies, structures, and stoichiometric ratios, non-layered transition metal carbides (NL-TMCs) exhibit many intriguing electrical/catalytic properties such as high gravimetric capacities, high conductivity, and excellent stability, greatly enriching the TMCs family, and accelerating the development of TMCs in various fields. This minireview summarizes the latest progress of NL-TMCs for energy conversion and storage applications. Several routes to synthesize NL-TMCs are primarily described, including carbothermal reduction, chemical vapor deposition, template-assisted method, and hydro/solvothermal. Then, we discuss their electrochemical performances in lithium-ion batteries, lithium-sulfur batteries, and water splitting, and so on. Finally, an outlook of the current challenges and tendencies presented to guide the rational designation and fabrication of NL-TMCs for practical applications.
Rational construction of Co-loaded ceramic composites by recycling gangue for microwave absorption
LI Guo-min, SHI Shu-ping, ZHU Bao-shun, LIANG Li-ping, ZHANG Ke-wei
当前状态:  doi: 10.1016/S1872-5805(21)60064-1
摘要(5) HTML(6) PDF(0)
摘要:
In the context of sustainable development, tackling the severe solid wastes pollution has become extremely urgent. Herein, the solid waste gangue was successfully recycled to synthesize the ceramic based composite microwave absorbing materials decorated with Co particles through a novel synthesis method. The magnetic Co particles were uniformly loaded in the ceramic matrix by the pelletizing process with gangue and Co2+ following by the in situ carbothermal reaction, and the Co content in ceramic composites can be precisely controlled by adjusting the Co2+ concentration. Furthermore, compared with gangue, the obtained composites displayed optimized performance, the minimum reflection loss value reached −48.2 dB and the effective absorbing band was measured to be 4.3 GHz with the coating thickness of 1.5 mm, which is mainly attributed to the enhanced magnetic loss and multiple interface polarization. Such innovative design of recycling gangue in this work can effectively realize the resource utilization of gangue, which is also beneficial for the low-cost and light-weight of microwave absorbing materials as well.
三维多级孔炭封装硫制备在室温环境运行的锂硫电池
Shan Yuhang, Li Libo, Du Jintian, Zhai Mo
当前状态:  doi: 10.1016/S1872-5805(21)60063-X
摘要(10) HTML(6) PDF(0)
摘要:
Because of high-energy density and popular price, lithium-sulfur batteries had been applied extensively for future energy storage. However, it faced with lots of challenges, especially in the sulfur loading and the shuttle effect of the soluble polysulfide. To solve these problems, a three-dimensional multistage porous carbon(3D-MPC) material as the sulfur host of lithium-sulfur battery had been designed. The three-dimensional porous structure was prepared by a template method which removed the polymethyl methacrylate and the zinc oxide. Electron microscopy and BET tests showed that interconnected macroporous channels and abundant large-sized mesoporous materials synergistically constituted a three-dimensional conductive carbon network. The three-dimensional network structure was conductive for electron/ion transfer and the relief area of the cathode volume expansion by the physical limiting effect. The multistage holes alleviated the shuttle effect by the capillary condensation. The electrochemical test result showed that the 3D-MPC-S cathode had an excellent electrochemical property. The first discharge specific capacity of the 3D-MPC-S was 1314.6 mAhg−1 at 0.2 C with the sulfur loading of 70% in the practical environment. After 100 cycles, the high capacity retention rate was 69.13%. At 0.5 C, the capacity retention rate of 200 cycles in the practical environment was 59.02% and the average coulombic efficiency was 98.16%. The 3D-MPC-S cathode will further promote the commercial development of lithium-sulfur batteries.
电化学制备超细g-C3N4量子点及其电催化析氢性能
YANG Na-na, CHEN Zhi-gang, ZHAO Zhi-gang, CUI Yi
当前状态:  doi: 10.1016/S1872-5805(21)60045-8
摘要(27) HTML(10) PDF(4)
摘要:
Benefiting from their high concentration of in-plane nitrogen element, superior chemical/thermal stability, tunable electronic band structure and environmental friendly feature, graphite-like carbon nitride (g-C3N4) as a new promising metal-free material has drawn numerous attention in photo-/electric-catalysis. Comparing to the regulation of band structure in photocatalysis, the deliberately synthesis of g-C3N4 electrocatalysts is mainly focused on the construction of catalytic sites and the modulation of the charge transfer kinetics. Herein, this work reports a rapid method for synthesizing ultrafine g-C3N4 quantum dots (QDs) via electrochemical exfoliation using Al3+ ions. The uniform g-C3N4 QDs with smaller lateral dimension and thickness are collected due to the higher charge density and stronger electrostatic forces of Al3+ ions in the lattice of host materials as compared to the conventional univalent alkali cations. The as-obtained g-C3N4 QDs exhibit average lateral dimension and thickness of 3.5 nm and 1.0 nm, respectively, as determined by the TEM and AFM measurements. Also, the presence of the rich C/N defects is verified by the UV-vis spectra. Encouragingly, the ultrafine g-C3N4 QDs exhibit superior hydrogen evolution reaction (HER) performance with an ultra-low onset-potential closely approaching to 0 V, and a low overpotential of 208 mV at 10 mA/cm2, as well as a remarkably low Tafel slope (52 mV·dec-1) in acidic electrolyte. Taking the fabrication of the ultrafine g-C3N4 QDs with rich C/N defects as an example, this work provides a simple and feasible way to exfoliate 2D layered materials into low-dimensional nanomaterials towards highly-efficient electrocatalysis, as well as the exploration of their fascinating physic-chemical properties.
蔗糖溶液制备微/介孔炭球及其电容性能
SHI Jing, TIAN Xiao-dong, LI Xiao, LIU Ye-qun, SUN Hai-zhen
当前状态:  doi: 10.1016/S1872-5805(21)60044-6
摘要(66) HTML(35) PDF(8)
摘要:
Micro/mesopore carbon spheres as electrode materials of supercapacitors were prepared by hydrothermal carbonization followed by KOH/NaOH activation using sucrose as the carbon precursor. The effects of KOH and NaOH activation parameters on the specific surface area, pore size distribution and electrochemical performance of the carbon spheres were investigated. Results indicate that the use of NaOH leads to the development of mesopores while the use of KOH is favorable to increase specific surface area and micropore volume. The pore size distribution of carbon spheres could be adjusted by varying the fraction of NaOH in the activation agent. A balanced capacitance and rate performance of the supercapacitor electrode in both 6 mol L−1 KOH aqueous electrolyte and 1 mol L−1 MeEt3NBF4/PC electrolyte is achieved when the carbonized product is activated at a mass ratio of NaOH+KOH/ carbonized product of 3∶1 with a NaOH/KOH mass ratio of 2∶1. As-prepared porous carbon delivers a capacitance of 235 F g-1 at 0.1 A g-1 and capacitance retention rate of 81.5% at 20 A g-1 in the 6 mol L−1 KOH aqueous electrolyte. In 1 mol L−1 MeEt3NBF4/PC, the cell based on the porous carbon delivers the highest energy and power output of 30.4 Wh kg−1 and 18.5 kW kg−1, respectively.
煤基石墨烯促进TiO2光催化降解有机物
LIU Guo-yang, LI Ke-ke, JIA Jia, ZHANG Ya-ting
当前状态:  doi: 10.1016/S1872-5805(21)60047-1
摘要(79) HTML(37) PDF(13)
摘要:
A reduced graphene oxide (H-rGO)/TiO2-composite (H-TiO2@rGO) as a catalyst for photocatalytic degradation of rhodamine B (Rh B) and methyl orange (MO) was prepared by hydrothermal treating a dispersant of TiO2 nanoparticles with sizes of 5-10 nm and GO obtained by the Hummers method from coal-based graphite in water. Compared with the M-TiO2@GO and M-TiO2@rGO composites by a wet mixing method, results indicated that the TiO2 nanoparticles in H-TiO2@rGO were uniformly decorated on both sides of rGO sheet, forming a stacked-sheet structure while apparent aggregation of TiO2 nanoparticles was found in both M-TiO2@GO and M-TiO2@rGO. Therefore, H-rGO@TiO2 had the highest catalytic activity towards degradation of Rh B and MO under visible light irradiation among the three, where the incorporation of rGO into TiO2 helps to narrow the band gap of TiO2, inhibit the recombination rate of electron–hole pairs and provide conductive networks for electron transfer.
石墨烯负载单原子钴催化剂的制备及其电催化二氧化碳还原反应性能研究
ZHANG Hui-nian, WANG Hui-qi, JIA Su-ping, CHANG Qin, LI Ning, LI Ying, SHI Xiao-lin, LI Zi-yuan, HU Sheng-liang
当前状态:  doi: 10.1016/S1872-5805(21)60061-6
摘要(31) HTML(15) PDF(8)
摘要:
Developing highly selective, economical and stable catalysts for electrochemical converting CO2 into value-added carbon products to mitigate both CO2 emission and energy crisis is still challenging. Here, we report an efficient and robust electrocatalyst for CO2 reduction reaction (CO2RR) by embedding single-atom CoN4 active sites into graphene matrix. These highly dispersed CoN4 sites show an extraordinary CO2RR activity, with a high CO Faradaic efficiency of nearly 95% at −0.76 V (vs. RHE) and remarkable durability. The corresponding overpotential is 0.65 V. Our finding could pave the way for the design of high-efficiency electrocatalyst for CO2RR at the atomic scale.
Preparation of 3D graphene-carbon nanotubes-magnetic hybrid aerogels for dye adsorption
Zu Rong Ang, Ing Kong, Rachel Shin Yie Lee, Cin Kong, Akesh Babu Kakarla, Ai Bao Chai, Wei Kong
当前状态:  doi: 10.1016/S1872-5805(21)60029-X
摘要(90) HTML(38) PDF(16)
摘要:
Novel hybrid aerogels, which can be magnetically extracted from water to avoid filtration, were prepared by adding ZnCl2, NiCl2·6H2O, FeCl2·4H2O and FeCl3·6H2O into a suspension of graphene oxide and oxidzed carbon nanotubes followed by co-precipatation under basic condition, crosslinking with polyvinyl alcohol in water and freeze-drying. The hybrid aerogels consist of magnetic Ni0.5Zn0.5Fe2O4 nanoparticles, graphene oxide, carbon nanotubes and polyvinyl alcohol, which have active sites that attract dye molecules and can be extracted from water by applying magnetic field. Under an optimal mass ratio of the components, the optimized hybrid aerogel has a high adsorption capacity (qe=71.03 mg g−1 for methylene blue) and a moderate magnetic strength of MS = 3.519 emu g−1. Its removal efficiencies for methylene blue, methyl orange, crystal violet and their mixture with an equal mass are 70.1%, 4.2%, 8.9% and 11.1%, respectively under the same dye concentration of 0.025 mg. mL−1. It can be reused for three regeneration cycles with a regeneration efficiency of over 82%. Also it is not toxic to the living organism, suggesting that it is promising as an adsorbent for treating industrial wastewater.
杂原子掺杂的羧酸功能化碳材料制备及其有效吸附U(VI)的研究
LIU Yan, LIU Xiao-peng, DAI Ying, WANG Yun, YUAN Ding-zhong, LIU Jin-biao, CHEW Jia-wei
当前状态:  doi: 10.1016/S1872-5805(21)60055-0
摘要(197) HTML(33) PDF(7)
摘要:
A N, S, P-codoped and oxidized porous carbon (CS-COOH) was prepared by carbonization of poly(cyclotriphosphazene-co-4,4’-sulfonyldiphenol), followed by KOH activation and oxidation with HNO3. The CS-COOH was used as an adsorbent for U(VI) in aqueous solutions. TEM, SEM, XPS and FTIR were used to characterize the microstructures of CS-COOH before and after adsorption. Results indicate that there is an optimal pH value of 6 for U(VI) adsorption. The adsorption kinetics and isotherm are fitted well by the pseudo-second-order model and the Langmuir model, respectively. The maximum adsorption capacity determined by the Langmuir model at 298 K and a pH value of 6 is 402.9 mg g-1. The CS-COOH has an excellent reusability with a 70% capacity retention of the original value after five adsorption-desorption cycles. The high U(VI) adsorption capacity is mainly attributed to the carboxyl, and P ans S groups by the formation of the UO22+(COO)2 complex, U-O-P and U-O-S bonds.
用于锂离子高体积储存的致密石墨颗粒的湿法制备
ZHANG Jia-peng, WANG Deng-ke, ZHANG Li-hui, LIU Hai-yan, LIU Zhao-bin, XING Tao, MA Zhao-kun, CHEN Xiao-hong, SONG Huai-he
当前状态:  doi: 10.1016/S1872-5805(21)60051-3
摘要(60) HTML(38) PDF(14)
摘要:
Graphite is the most widely used anode material for lithium ion batteries (LIBs), and increasing the sphericity and density of graphite is the main way to further improve energy density of LIBs. Herein, we report a simple preparation of high tap-density graphite granules by the high-shear wet granulation. In this way, we densified two kinds of graphite into granule, namely wet-granulation graphitic onion-like carbon (WG-GOC) and wet-granulation artificial graphite (WG-AG). It is found that, compared with the original graphite before granulation, the tap density of WG-GOC increases by ca.34%, and WG-AG increases by ca.44%. Therefore, when as the anode of LIBs,, the volumetric capacities of WG-GOC and WG-AG have increased by ca.35% and ca.55%, respectively, at the current density of 50 mA g−1. In addition, the rate performance of WG-GOC also has been significantly improved. The volumetric capacity of WG-GOC increased by 169.1% at the current density of 2000 mA g−1. The significant improvement of electrochemical performance benefits from the higher tap density of the prepared graphite granules. Hence, we developed a facile wet-granulation to prepare high tap-density graphite anodes, which conducive to the development of high volumetric capacity.
高性能无烟煤基石墨的制备及其储锂性能研究
LI Yuan, TIAN Xiaodong, SONG Yan, YANG Tao, WU Shijie, LIU Zhanjun
当前状态:  doi: 10.1016/S1872-5805(21)60057-4
摘要(53) HTML(24) PDF(8)
摘要:
In this study, cost-effective anthracite and industrial silicon powder were used as precursor and catalyst, respectively, to prepare graphite with various structure, during which the catalytic mechanism was analyzed. The results demonstrate that the as-obtained sample with 5% silicon catalyst (G-2800-5%) exhibits the best overall lithium storage performance. In detail, G-2800-5% display the best graphite structure with graphitization degree of 91.5%. As anode materials, a high reversible capacity of 369.0 mAh g−1 can be achieved at 0.1 A g−1. Meanwhile, the reversible capacity of 209.0 mAh g−1 can be obtained at the current density of 1 A g−1. It also delivers good cyclic stability with a 92.2% retention after 200 cycles at 0.2 A g−1. The highly developed graphite structure, which is favorable to the formation of stable SEI and reduced lithium ion loss should be responsible for the superior electrochemical performance.
氮/磷共掺杂废旧棉织物基活性碳的制备及其超级电容器性能
HUANG Ling, WANG Shuai, ZHANG Yu, HUANG Xiang-hong, PENG Jun-jun, YANG Feng
当前状态:  doi: 10.1016/S1872-5805(21)60054-9
摘要(25) HTML(11) PDF(3)
摘要:
Transforming waste resources into energy storage materials is a new way to turn waste into treasure and solve the problem of energy shortage and environmental pollution in current society. In this paper, nitrogen/phosphorus co-doped activated carbon material was synthesized from the waste cotton fabric by one-step carbonization and activation in molten salt system combined with ammonium polyphosphate co-doping technology. The morphology, structure and composition of the materials were characterized by scanning electron microscopy (SEM), nitrogen adsorption desorption (BET), Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS). The cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) were used to test the supercapacitor performance of the prepared materials. The results show that the waste cotton fabric, which is mixed with ammonium polyphosphate in the ZnCl2/KCl molten salt medium, then treated by carbonization and activation under high temperature, generates the nitrogen/phosphorus co-doped activated carbon with the specific surface area of 751 m2·g−1. In the three-electrode system, the specific capacitance is as high as 423 F·g−1 (at a current density of 0.25 A·g−1), and its capacitance retention is as high as 88.9% of the initial capacitance after 5000 cycles at a current density of 5 A·g−1. Meanwhile, when the material was assembled into a symmetrical supercapacitor, the achieved energy density can be up to 28.67 Wh·kg−1 at a power density of 200 W·kg−1. According to these results, converting waste cotton fabric resources into energy storage materials has succeeded in achieving high value-added reuse of waste textiles.
液相烧结法制备MoSi2改性HfB2-SiC超高温陶瓷抗氧化涂层研究
REN Xuan-ru, WANG Wei-guang, SUN Ke, HU Yu-wen, XU Lei-hua, FENG Pei-zhong
当前状态:  doi: 10.1016/S1872-5805(21)60060-4
摘要(29) HTML(16) PDF(5)
摘要:
In this paper, a liquid-phase sintering method was developed by combining in-situ reaction method with slurry method to prepare HfB2-MoSi2-SiC coatings with controllable composition, content and thickness. The effect of MoSi2 content on the oxidation protection behavior of HfB2-MoSi2-SiC composite coating under dynamic aerobic environment at room temperature ~ 1500 ℃ and static constant temperature air at 1500 ℃ was studied, the relative oxygen permeability was used to characterize the oxidation resistance of the coating. The results of dynamic oxidation test at room temperature ~ 1500 ℃ showed that the initial oxidation weight loss of the samples was delayed from 775 ℃ to 821 ℃, and the maximum weight loss rate decreased from 0.9×10−3 mg·cm−2·s−1 to 0.2×10−3 mg·cm−2·s−1 with the increase of MoSi2 content, the lowest relative oxygen permeability was reduced to 12.2%, resulting in the weight loss of the sample from 1.8% to 0.21%. In this paper, the mechanism of MoSi2 enhancing the ability of oxidation protection of the coating is revealed. With the increase of MoSi2 content, the amount of SiO2 glass phase in the coating is increased, and the dispersion of Hf-oxide on the coating surface is promoted, thus, the Hf-Si-O compound glass layer with higher stability can be formed, and the weight loss rate of the sample reduced from 0.46% to 0.08% after 200 h oxidation at 1500 ℃ in constant temperature air.
树脂基球状活性炭用于焦油加氢后油品脱色研究
武俊成, 王建龙, 管涛涛, 张果丽, 李开喜
当前状态:  doi: 10.1016/S1872-5805(21)60056-2
摘要(27) HTML(24) PDF(9)
摘要:
采用悬浮聚合、水蒸气活化方法制备了树脂基球状活性炭,并进行硝酸氧化改性,用于焦油加氢后油品的脱色研究。通过SEM、N2吸附-脱附、FTIR、XPS、TG等技术对所制样品ACS和NACS进行结构性质表征。结果显示,经硝酸氧化改性后,NACS样品的表面形貌和孔结构并未受到显著影响,但球状活性炭表面的含氧官能团明显增加。选取两种典型的显色化合物对苯醌(PBQ)和N,N-二仲丁基对苯二胺(DBD)配置一定浓度的模型油进行吸附脱色,考察了吸附时间、吸附温度和吸附剂用量对吸附剂性能的影响。研究表明,NACS样品展现出良好的吸附性能,在一定的吸附条件下,对DBD和PBQ的脱色率分别达到94.5%和96.6%,除了球状活性炭表面微孔提供的活性位点之外,NACS表面官能团与有色物质形成的氢键可能对吸附性能的提升起着关键作用。重复使用6次后,吸附剂对两者的脱色率仍能达到90%以上,展现出良好的可再生性能。在对真实加氢油品脱色后,脱色效果显著,验证了所制备吸附剂在实际应用中的可行性。
Hierarchical Porous Carbon from lignin-rich residue for High-Performance Supercapacitor
FANG Yan-yan, ZHANG Qian-yu, ZHANG Dong-dong, CUI Li-feng
当前状态:  doi: 10.1016/S1872-5805(21)60058-6
摘要(34) HTML(13) PDF(5)
摘要:
Designing electrically conductive electrode material with a hierarchical pore structure from abundant raw material remains a significant challenge in the development of energy storage research. In this work, 3D porous carbons with high surface areas are synthesized via high-temperature carbonization and activation. The synthesized activated carbons deliver a specifical capacitance of 280 F g−1 and area-specific capacitance of 1.3 F cm−2 at a current density of 0.5 A g−1. The assembled symmetric supercapacitor can deliver a high energy output (7.7 Wh kg−1 at 5200 W kg−1). Thus, it is demonstrated the repurposing of lignin waste as electrode material can be a feasible resource that goes beyond the limitations of utilizing lignin in low value-added applications.
石墨磷引起的缺陷碳纳米管展现出较高的氢析出活性
AI Jie, LIU Zi-wu, SUN Mao-mao, LIU Ling, WANG Quan-de
当前状态:  doi: 10.1016/S1872-5805(21)60052-5
摘要(75) HTML(44) PDF(9)
摘要:
The phosphorus-doped carbon materials as one of novel carbon catalysts towards the hydrogen evolution reaction (HER) have attracted considerable attention over the past years. However, the role of C-P species palyed in the HER activity is still not clear up to now. Phosphorus-doped carbon nanotubes (P-CNTs) were prepared by chemical vapor deposition and annealed at 900, 1000 and 1200 ℃ to remove all or parts of phosporus species, resulting in four samples with different proportions of graphite-, pyridine- and pyrrole-like P species. The correlations between their HER activity and the contents of three types of P species were investigated. Results showed that the content of graphite-like P decreased with the annealing temperature and no graphite-like P was retained at 1200℃. The HER activity increased with the annealing temperature and the one annealed at 1200 ℃ had the highest HER activity in an acid medium with an overpotential of 0.266 V at a current density of 10 mA/cm−2. Density functional theory calculations revealed that the pentagon- and nine-membered ring defects formed by the destruction of graphite-P species contributed mainly to the HER activity, which gave a deep insight into the active sites for HER.
氢氧化钾处理中间相碳微球应用于高倍率钾离子电池负极
XIAO Nan, GUO Hong-da, XIAO Jian, WEI Yi-bo, MA Xiao-qing, ZHANG Xiao-yu, QIU Jie-shan
当前状态:  doi: 10.1016/S1872-5805(21)60059-8
摘要(24) HTML(15) PDF(3)
摘要:
Graphite is one of the most promising anode materials for potassium-ion batteries (PIBs) due to its low cost and stable discharge plateau. However, its poor rate performance still needs to be improved. Herein, a novel graphitic anode was designed from commercial mesocarbon microbeads (MCMB) by KOH treatment. Through limited oxidation and slight intercalation, an expanded layer with enlarged interlayer spacing formed on the surface of MCMB, by which the K+ diffusion rate was significantly improved. When served as the PIB anode, this modified MCMB delivered a high plateau capacity below 0.25 V (271 mAh g−1), superior rate capability (160 mAh g−1 at 1.0 A g−1), excellent cycling stability (about 184 mAh g−1 after 100 cycles at 0.1 A g−1), and high initial coulombic efficiency with carboxymethyl cellulose as binder (79.2%). This work provides a facile strategy to prepare graphitic materials with superior potassium storage property.
不同温度下高温纯化后球形燃料元件A3-3基体石墨的性能和微观结构研究
ZHOU Xiang-wen, ZHANG Kai-hong, YANG Yang, WANG Lei, ZHANG Jie, LU Zhen-ming, LIU Bing, TANG Ya-ping
当前状态:  doi: 10.1016/S1872-5805(21)60048-3
摘要(58) HTML(29) PDF(5)
摘要:
Matrix graphite (MG) was purified by high temperature purification (HTP), and their properties and microstructures were measured and analyzed to investigate the effect of HTP temperature on the property improvement of A3-3 MG as a pebble fuel element, and to optimize the purification temperature. Results showed that all the properties of MG specimens purified at temperatures from 1600 to 1900 ℃ met the technical requirements. X-ray diffraction analysis results showed that the microstructures of MG after HTP were significantly improved. With increasing the purification temperature from 1600 to 1900 ℃, MG gradually became ordered, the microstructures became better gradually for improving the comprehensive performance. The ash content decreased abruptly after HTP at 1600 ℃, but changed little when the purification temperature rose from 1600 to 1900 ℃. The microstructure improvement at high temperatures played a decisive role in increasing the oxidative corrosion resistance of MG. Therefore, HTP is very important and necessary, and cannot be canceled in the production of pebble fuel elements. This study provides an important reference to determine an optimal HTP temperature of pebble fuel elements for improving the production efficiency and reducing production cost in the commercial production of pebble fuel elements in the future.
表面官能化对热塑性涂层改性碳纤维表界面性质的影响
SU Ya-nan, ZHANG Shou-chun, ZHANG Xing-hua, JING De-qi
当前状态:  doi: 10.1016/S1872-5805(21)60023-25
摘要(45) HTML(19) PDF(6)
摘要:
Hydroxyl- and amino- functionalized carbon fibers (CF-OH and CF-NH2) were prepared by surface oxidation with mixed acid and grafting with ethylenediamine, respectively. The functionalized CFs were sized with a sulfonated poly (ether ether ketone) (SPEEK) sizing agent to prepare CF-OH-SPEEK and CF-NH2-SPEEK. The effect of surface functionalization on the surface properties of CFs and the interfacial properties in PEEK maxtrix composites were investigated. Results show that the contents of polar functional groups and wettability of CFs increase significantly after surface functionalization. There are chemical reactions between CFs and the sizing agent, which improve the interfacial adhesion between CFs and the sizing agent. The interfacial shear strengths of CF-OH-SPEEK and CF-NH2-SPEEK reinforced PEEK matrix composites are increased by 6.2% and 14.0%, respectively, as compared with that of desized-SPEEK CFs. The surface functionalization is beneficial to improve the interfacial adhesion of thermoplastic-coated CF/PEEK composites.
高导热中间相沥青基碳纤维的微观结构特征研究
YE Chong, WU Huang, ZHU Shi-peng, FAN Zhen, HUANG Dong, HAN Fei, LIU Jin-shui, YANG Jian-xiao, LIU Hong-bo
当前状态:  doi: 10.1016/S1872-5805(21)60050-1
摘要(49) HTML(38) PDF(9)
摘要:
The microstructural characteristics of the high thermal conductive (500−1127 W·m−1·K−1) mesophase pitch-based carbon fibers were compared based on characterization by XRD, Raman spectroscopy, SEM and TEM. The relationship between microstructural characteristics and thermal conductivity was obtained. The results show that a radial structure is always accompanied by a split structure and high thermal conductivity. La has a more significant impact on the thermal conductivity than Lc, and ID/IG value on the cross section obtained from Raman spectra can be used as an essential index to evaluate the thermal conductivity of the carbon fibers. The microstructural characteristics including large graphite crystallite size, high preferred orientation degree along the axis direction, and few crystallite defects contribute to the high thermal conductivity of the carbon fibers.
Synthesis and application of hollow carbon spheres for electric double-layer capacitors
XU Kuang-liang, LIU Jing, YAN Zhao-xiong, JIN Mei, XU Zhi-hua
当前状态:  doi: 10.1016/S1872-5805(20)60517-0
摘要(50) HTML(24) PDF(2)
摘要:
Supercapacitors have gradually become an important energy storage device. Based on mechanisms of energy storage, supercapacitors are generally categorized into pseudocapacitors and electric double-layer capacitors (EDLCs). Nowadays, the electrodes are mainly carbon materials in commercial EDLCs. Hollow carbon spheres (HCSs) have attracted extensive attention in the electrode materials of EDLCs owing to their large specific surface area, high electrical conductivity, excellent electrochemical stability and high mechanical strength. Progress in the preparation of HCSs including the hard templating method, soft templating method, template-free methods and modified Stöber method, along with the electrochemical performance of the corresponding HCSs in EDLCs is reviewed. The correlation of the specific surface area, pore size and doped foreign atoms to the electrochemical performance of HCSs is summarized, which will shed some light on the preparation of HCSs with low-cost and high-performance for uses in supercapacitors and other fields.
Magnetic Modification of Tea Waste for Uranium Adsorption
YANG Ai-li, YANG Sheng-ya, ZHU Yu-kuan
当前状态:  doi: 10.1016/S1872-5805(21)60023-29
摘要(46) HTML(22) PDF(6)
摘要:
Tea waste (TW) was crushed into powder and mixed with graphene oxide (GO) in water, followed by adjusting the pH value of the resulting suspension with ammonia, adding FeCl2·4H2O under magnetic stirring, filtration and drying to prepare a rGO/Fe3O4/TW composite. The microstructure and crystal phase of the composite were characterized by FTIR and XRD. The effects of the pH value, adsorption time and initial uranium concentration on the uranium removal rate were investigated. Results indicate that rGO/Fe3O4/TW has excellent adsorption performance with an uranium removal rate up to nearly 100% in a short time at an initial uranium concentration of 10 mg. L-1. The maximum adsorption capacity of rGO/Fe3O4/TW is 103.84 mg. g-1 while that of TW is 97.70 mg. g-1. The rGO/Fe3O4/TW adsorbed with uranium is easily separated from the solution by appying magnetic field. The isotherm and kinetics of uranium adsorption on rGO/Fe3O4/TW are best fitted by the Langmuir isotherm model and the pseudo-second-order model. The rGO/Fe3O4/TW and TW have a good reusability with an uranium removal rate of about 85% after five cycles.
PAN预氧结构径向调控及其对炭纤维性能的影响
WANG Yun-Feng, WANG Yi-Wei, XU Liang-Hua, WANG Yu
当前状态:  doi: 10.1016/S1872-5805(20)60516-9
摘要(71) HTML(22) PDF(7)
摘要:
The radial structure of pre-oxidized fibers and its distribution directly affect the performance of the resulting carbon fibers. Optimizing the radial distribution of pre-oxidized structure and establishing the relationship between the pre-oxidized structure of polyacrylonitrile fibers and the mechanical properties of the final carbon fibers will help to optimize the pre-oxidation conditions in the preparation of high-performance carbon fibers. Herein, solid-state nuclear magnetic resonance spectroscopy, optical microscopy, thermogravimetric analysis, and mechanical tests were used to investigate the effect of the pre-oxidation reaction rate on the radial structural distribution of pre-oxidized fibers and the mechanical properties of the resulting carbon fibers. The pre-oxidation reaction rates were controlled by regulating the pre-oxidation temperature gradient. The results showed that the pre-oxidation degree of pre-oxidized fibers increased with both the overall and initial rates of pre-oxidation. With increasing the overall pre-oxidation reaction rate, the pre-oxidized structure was deepened into the core region of the fibers, the content of oxygen-containing functional groups increased, the thermal stability of the fibers decreased, the graphitization degree of the corresponding carbon fibers increased, but the density of the carbon fibers decreased and the mechanical properties of the carbon fibers were degraded. With increasing the initial reaction rate of pre-oxidation, the radial distribution of the pre-oxidation structure was effectively improved, the content of oxygen-containing functional groups of the pre-oxidized fibers increased slightly, their thermal stability was improved, the degree of graphitization and density of the final carbon fibers increased, and the tensile strength and tensile modulus of the final carbon fibers were markedly increased. A new type of carbon fibers with high strength, medium modulus and a relatively large diameter was obtained under the optimized pre-oxidation conditions.
功能集成策略制备孔结构可控的虾壳基多孔炭及超电应用
Gao Feng, Xie Ya-qiao, Zang Yun-hao, ZHOU Gang, QU Jiang-ying, WU Ming-bo
当前状态:  doi: 10.1016/S1872-5805(21)60019-7
摘要(50) HTML(26) PDF(3)
摘要:
Highly efficient synthesis of nitrogen-doped carbons with different porous structures is reported using shrimp shell as the carbon and nitrogen source, and its CaCO3 component as the hard template and the activator. The content of CaCO3 in shrimp shell can be tuned easily in the range of 0-100% by leaching with an acetic acid solution for different times. CaO derived from decomposition of CaCO3 acts as the activator and template to tailor the pore sizes of the carbons. CO2 derived from decomposition of CaCO3 also plays an activating role. Their specific surface areas, pore volumes, ratios of micropore volumes to total pore volumes can be adjusted in the range of 117.6-1137 m2 g-1, 0.14-0.64 cm3 g-1, and 0-73.4%, respectively. When used as the electrodes of supercapacitor, the porous carbon obtained with a leaching time of 92 min exhibits the highest capacitances of 328 F g-1 at 0.05 A g-1 in a 6 M KOH electrolyte and 619.2 F g-1 at 0.05 A g-1 in a 1 M H2SO4 electrolyte. Its corresponding energy density at a power density of 1470.9 W kg-1 is 26.0 Wh kg-1. This work provides a low cost method for fabricating porous carbons to fulfill the high-value-added use of biomass.
2021 年 3 期目录
2021, (3): 1-1.  
摘要(38) HTML(5) PDF(13)
摘要:
英文目录
2021, 36(3): 1-5.  
摘要(14) HTML(4) PDF(5)
摘要:
综合评述
用于钾基能源存储的石墨材料研究进展
王登科, 张家鹏, 董玥, 曹斌, 李昂, 陈晓红, 杨儒, 宋怀河
2021, 36(3): 435-448.   doi: 10.1016/S1872-5805(21)60039-2
摘要(136) HTML(42) PDF(47)
摘要:
Potassium ion batteries (KIBs) and potassium-based dual ion batteries (KDIBs) are newly-emerging energy storage devices that have attracted considerable attention owing to the low-cost of potassium resources and their comparable performance to lithium-ion batteries (LIBs). Graphite materials, as the successful commercialized anode materials of LIBs, can also be used as anodic and cathodic host materials for the intercalation of the large potassium cations and other anions, respectively. However, there are still some challenges hindering the practical application of graphite materials in the anode for KIBs and the cathode for KDIBs. The huge volume changes after intercalation (61% for K and 130% for anions) result in graphite interlayer slipping and structural collapse, causing capacity fade and a short cycle life. Moreover, the intercalation of large K+ and anions have poor kinetics due to the small graphite interlayer spacing, restricting the rate capability. To solve these issues of the use of graphite materials, this review attempts to provide a better understanding of the intercalation mechanisms for K+ and anions, and to correlate the electrochemical performance of KIBs and KDIBs to the microstructure of graphite, and the physicochemical properties of electrolytes and binders. Finally, research prospects are provided to guide the future development of graphite materials for potassium-based energy storage.
基于石墨烯量子点的多相催化剂
杜政, 沈淑玲, 唐志红, 杨俊和
2021, 36(3): 449-467.   doi: 10.1016/S1872-5805(21)60036-7
摘要(101) HTML(48) PDF(30)
摘要:
Graphene quantum dots (GQDs), as a unique member of the nanocarbon family, have become important catalysts for overall water splitting and metal-air batteries because of their high specific surface area, abundant surface chemical reaction sites and high electron mobility. Understanding the fundamental catalytic mechanism of GQDs in heterogeneous catalysis is conducive to the rational design of high performance GQD-based catalysts. This article summarizes current research progress in the synthesis, modification and applications of GQD-based heterogeneous catalysts in overall water splitting, metal-air batteries and other fields. The issues related to the use of GQD-based catalysts in these fields are discussed together with their future development.
多孔金属有机框架材料在甲烷存储与捕集中的研究进展及挑战
李东泽, 陈雷, 刘刚, 袁子云, 李秉繁, 张旭, 魏甲强
2021, 36(3): 468-496.   doi: 10.1016/S1872-5805(21)60034-3
摘要(225) HTML(87) PDF(60)
摘要:
In the process of global transition to a sustainable low-carbon economy, the two major low-carbon energy technologies, namely, methane (CH4) storage and methane capture face the same challenge, that is, the lack of efficient adsorbents. Metal-organic framework (MOF) materials have potential value in the field of gas adsorption storage because of their high specific surface area, good porosity, and adjustable pore structure. In this study, the structural design and synthesis methods of MOFs are introduced, and the research progress and problems associated with MOF materials in methane storage and capture are reviewed. The current research status of methane storage at high pressure is introduced in terms of volumetric and gravimetric uptake. For methane capture at atmospheric pressure, emphasis is placed on CH4/N2 and CO2/CH4 separation and methane capture technologies. Finally, the problems and challenges of using MOF materials to achieve efficient methane storage and capture are analyzed and future prospects are presented.
碳基材料原子尺度低损伤透射电子显微分析
刘培植, 郝兵, 章海霞, 许并社, 郭俊杰
2021, 36(3): 497-511.   doi: 10.1016/S1872-5805(21)60040-9
摘要(214) HTML(57) PDF(85)
摘要:
Although carbon-based materials, such as graphene, metal-organic frameworks (MOFs), polymers and biomolecules, have aroused increasing scientific interest in the fields of physics, chemistry, materials science and molecular biology, their atomic-scale observation is still a challenge due to their structural instability under the electron beam. Ambiguous atomic arrangements have critically limited the fundamental understanding on these materials and their potential applications in electronics, mechanics, thermodynamics, catalysis, bioscience and medicine. Very recently, revolutionary sub-Ångström resolution achievements of transmission electron microscopy (TEM) using a low voltage, a low electron dose, or a cryogenic environment have greatly facilitated the atomic-scale structural and chemical examination of electron beam sensitive materials. In particular, the ability to image light elements atom by atom gives unprecedented insight into the structures and properties of novel carbon-based materials. In this review, the recent developments in advanced TEM combined with various imaging and spectroscopy techniques, and their use in examining graphene-based materials, MOFs, polymers, and biomacromolecules are summarized and discussed. The current challenges in materials research and trends for the future design of TEM equipment are outlined, which is expected to provide a deeper understanding of structure–performance relationships and the discovery of new carbon materials.
两种极限粒度的金刚石:从大尺寸单晶到纳米晶
王杨, 王伟华, 杨世林, 舒国阳, 代兵, 朱嘉琦
2021, 36(3): 512-526.   doi: 10.1016/S1872-5805(21)60030-6
摘要(581) HTML(76) PDF(52)
摘要:
Diamonds with two extreme sizes, large single crystal and nanocrystalline, have completely different properties, and have aroused the continuous attention of researchers. Each has its own merits and can be converted into the other. The synthesis of large single crystal diamond can be described as the aggregation, assembly and combination of nanocrystalline nuclei, i.e., diamond transforming from the nano-scale to the inch scale. A large single crystal diamond can be transformed into nanocrystals by surface nanocrystallization. The preparation methods, properties and applications of single crystal diamonds of different sizes are introduced and the transformations between them are described. Research interest in controlling the crystal size is discussed.
基于碳点的固体发光材料:合成及其在白光发射二极管和光学传感器中的应用
侯仕达, 周仕禄, 张书铭, 李洪光
2021, 36(3): 527-545.   doi: 10.1016/S1872-5805(21)60042-2
摘要(98) HTML(48) PDF(31)
摘要:
Carbon dots (CDs) have been regarded as a new star in the family of carbon nanomaterials, and have been widely studied since they were accidentally discovered in 2004. CD-based solid-state luminescent (CD-SSL) materials have the advantages of being environmentally friendly, non-toxic and low cost, which makes them ideal candidates to replace rare earth/semiconductor quantum dot-based luminescent materials. However, because of their quenching caused by aggregation, it is a great challenge to retain their luminescent properties when they are transferred from solution to the solid state. This review gives a brief introduction to the synthesis methods for CDs, followed by a detailed description of the most widely used strategies for the preparation of CD-SSL materials and their typical applications in white light-emitting diodes and optical sensors. Finally, the shortcomings of current research on CD-SSL materials are discussed, and their future in the above-mentioned as well as other fields is briefly considered.
超级电容器用生物质基多孔炭的研究进展
Majid Shaker, Ali Asghar Sadeghi Ghazvini, 曹蔚琦, Reza Riahifar, 葛奇
2021, 36(3): 546-572.   doi: 10.1016/S1872-5805(21)60038-0
摘要(104) HTML(32) PDF(45)
摘要:
Electrochemical capacitors, also called supercapacitors (SCs), have been gaining a more significant position as electrochemical energy storage devices in recent years. They are energy storage devices with a considerable power density, a satisfactory energy density and a long-life cycle, suitable for a large number of applications. The further development of these devices relies on providing suitable, low-cost, environmentally friendly, and abundant materials for use as the active materials in the electrodes. Among the current materials used, activated carbons have a superior performance. Their excellent electrochemical performance, high specific surface area, high adsorption, tunable surface chemistry, fast ion/electron transport, abundant functional moieties, low cost, and abundance have made them promising candidates as SC electrodes. These advantages can be enhanced if the activated carbons are prepared from biomass precursors. Recently, scientists have focused on biomass because it is abundant and renewable, low cost, simply processed, and environmentally friendly. The fundamentals of SCs as an electrochemical energy storage device are discussed and biomass from various sources is categorized and introduced. Finally, the activation techniques for these biomass precursors and their use as electrode materials for SCs are discussed.
研究论文
具有高倍率性能的还原氧化石墨烯包覆MnO微球负极用于锂离子电容器
贾耀, 杨哲伟, 李慧君, 王永祯, 王晓敏
2021, 36(3): 573-584.   doi: 10.1016/S1872-5805(21)60037-9
摘要(74) HTML(23) PDF(29)
摘要:
Developing an anode material with high-rate Li+ intercalation and stable charge/discharge platform is important for achieving high performance lithium ion capacitors (LICs). Reduced graphene oxide (rGO)-encapsulated MnO microspheres (~2 μm) are obtained by a simple process including solvothermal and calcination techniques. The material contains a large number of mesopores (~2.8 nm diameter). The MnO/rGO has a favorable cycling stability (846 mAh g−1 at 0.1 A g−1 after 110 cycles) and an outstanding rate performance (207 mAh g−1 at 6.4 A g−1). Kinetic analysis reveals that a pseudocapacitive contribution plays a dominant role for the energy storage. The improvement in the pseudocapacitive behavior is ascribed to the fact that the uniform rGO coating on the MnO provides continuous pathways for electron transport, and the mesoporous structure provides numerous migration paths for Li-ions. Furthermore, MnO/rGO//activated carbon (AC) LICs have a high energy density of 98 Wh kg−1 at a relatively high power density of 10350 W kg−1, and have a capacity retention of 71% after 5 000 cycles at 1.6 A g−1. These outstanding results indicate that the enhanced Li+ intercalation of the anode offsets the kinetic imbalance between the two electrodes.
硼氮双掺杂提升碳点电催化氧还原活性研究
刘卉, 刘子慧, 张金强, 智林杰, 吴明铂
2021, 36(3): 585-593.   doi: 10.1016/S1872-5805(21)60043-4
摘要(65) HTML(20) PDF(20)
摘要:
Carbon dots (CDs) have become an emerging carbon nanomaterial for use in energy-conversion systems because of their large surface area and rapid electron transfer. Carbon dots (BN-CDs) doped with both boron and nitrogen were synthesized by a simple one-step electrochemical etching approach using low-cost petroleum coke as precursor. Compared with CDs doped with only B or N, BN-CDs showed an excellent four-electron oxygen reduction reaction (ORR) activity with a positive onset potential of 0.958 V and a large diffusion-limited current density of −4.32 mA cm−2. Furthermore, the long-term stability and methanol tolerance of BN-CDs were better than those of a commercial Pt/C catalyst. It was found by density functional theory (DFT) calculation that the co-doping of N and B promoted the adsorption of O2 molecules in the ORR process. This work provides new insight into the rational design of carbon nanomaterials and their use in energy conversion.
界面自组装构筑空心多孔石墨化炭球及其电化学性能
张晓华, 甘欣雨, 刘宝胜, 闫晓燕, 赵新新
2021, 36(3): 594-605.   doi: 10.1016/S1872-5805(21)60062-8
摘要(129) HTML(54) PDF(23)
摘要:
Graphitic hollow porous carbon spheres (GHPCSs) have the advantages of a unique cavity structure, high surface area and excellent conductivity, and are promising electrode materials for energy storage. A Fe–tannic acid (TA) framework synthesized using TA as the carbon source and K3 [Fe(C2O4)3] as a complexing agent, was self-assembled onto a melamine foam, which was converted to GHPCSs by carbonization, where the K3 [Fe(C2O4) 3] also acts as an activating-graphitizing agent. The outer shell of the as-prepared GHPCSs has a large specific surface area, a micropore-dominated structure and excellent electrical conductivity, which ensure a large enough active surface area for charge accumulation and fast ion/electron transport in the partially graphitized carbon framework and pores. The optimum GHPCS has a high capacitance of 332.7 F g−1 at 1 A g−1. An assembled symmetric supercapacitor has a high energy density of 23.7 Wh kg−1 at 459.1 W kg−1 in 1 mol L-1 Na2SO4. In addition, the device has long-term cycling stability with a 92.1% retention rate after 10 000 cycles. This study not only provides an economic and time-saving approach for constructing GHPCSs by a self-assembly method, but also optimizes ion/electron transport in the carbon spheres to give them excellent performance in capacitive energy storage.
基于PAN前驱体不同热处理温度制备NCFs及在锂硫电池中的电化学行为
姚山山, 何燕苹, ArslanMajeed, 张翠娟, 沈湘黔, 黎天保, 覃事彪
2021, 36(3): 606-615.   doi: 10.1016/S1872-5805(21)60032-X
摘要(382) HTML(46) PDF(45)
摘要:
A 3D assembly of nitrogen-doped carbon nanofibers (NCFs) derived from polyacrylonitrile was synthesized by a combined electrospinning/carbonization technique and was used as the positive current collector in lithium sulfur (Li-S) batteries containing a Li2S6 catholyte solution. The physical and electrochemical behavior of the NCFs were investigated and it was found that their electrochemical performances depended on the pyrolysis temperature. Of the samples carbonized at 800, 900 and 1 000 °C, those carbonized at 900 °C performed best, and delivered a reversible capacity of 875 mAh•g−1 at a high sulfur loading of 4.19 mg•cm2 and retained at 707 mAh•g−1 after 250 cycles at 0.2 C. The coulombic efficiency of the NCF-900@Li2S6 electrode was almost 98.55% over the entire cycle life. In addition, the capacity retention of the electrode reached 81.53% even at a high current density of 1 C for over 150 cycles. It was found that the NCFs carbonized at 900 °C had the highest electrical conductivity, which might be the dominant factor that determined its performance for use as a positive current collector.
间苯二酚/甲醛树脂基高电化学性能炭微球的尺寸控制合成
杜旭, 杨慧敏, 张研兰, 胡庆成, 李松波, 赫文秀
2021, 36(3): 616-624.   doi: 10.1016/S1872-5805(21)60033-1
摘要(63) HTML(20) PDF(14)
摘要:
Nanostructured phenolic resin-based carbon aerogels with an extensive network structure are regarded as ideal energy storage materials for supercapacitors. However, the initial bulk form and low capacitance of previously reported porous carbon aerogels are problematic for practical use. Phenolic resin-based porous carbon spheres were synthesized by a simple hydrothermal process using ammonia, ethylenediamine or hexylenediamine as a catalyst. The porous carbon spheres were investigated by SEM, BET, XPS, etc. It was found that the number of ammonium groups, length of the alkyl chain and processing temperature play vital roles in determining the pore structure, size and uniformity of the carbon spheres. NH4+ is necessary to obtain the carbon spheres and but changing the other parameters has no obvious effect on their crystal structure. The sample prepared at a hydrothermal temperature of 80 °C using ammonia as the catalyst has the highest specific capacitance of 233.8 F g−1 at a current density of 1.0 A g−1. It has an excellent capacitance retention of 98% after 10 000 charge/discharge cycles at 7 A g−1, indicating its good cycling stability and rate capability. This result shows that a higher specific surface area, porosity and defect density are probably the crucial factors in improving the electrochemical capacitance.
碳量子点:不同发光行为原因分析及其性能
方黎洋, 郑经堂
2021, 36(3): 625-631.   doi: 10.1016/S1872-5805(21)60031-8
摘要(58) HTML(26) PDF(17)
摘要:
Two kinds of carbon quantum dots, C-dots-160 and C-dots-200 with different fluorescence luminescence behaviors were synthesized by a one-step hydrothermal method at 160 and 200 °C, respectively, using ammonium citrate as the raw material. The relationship between the microstructure of the C-dots and the fluorescence emission behavior was investigated. Results indicate that an increase of synthesis temperature introduces more oxygen and nitrogen atoms into the C-dots, increasing the total number of structural defects and altering their concentation ratio . It is this ratio difference in the two C-dots that causes their different luminescence behaviors. The proportion of several types of defects in the C-dots-200 are relatively balanced, leading to excitation wavelength-dependent fluorescence while the most abundant defects in C-dots-160 are in the form of C=O, which is the main reason for its excitation independent luminescence behavior. The number of structural defects in C-dots-160 is less than in C-dots-200 and the latter has the stronger fluorescence emission.
近红外荧光碳点的合成及其在生物成像中的应用
李利平, 任晓烽, 白佩蓉, 刘妍, 许玮月, 解军, 张瑞平
2021, 36(3): 632-638.   doi: 10.1016/S1872-5805(21)60041-0
摘要(68) HTML(20) PDF(15)
摘要:
It is very difficult to prepare red/near-infrared emission carbon dots (CDs) for bio-imaging applications which are needed because of their deep tissue penetration, minimal auto-fluorescence, and low emission light damage to bio-tissues. Near-infrared emitting CDs (NIR-CDs) were synthesized from sulfonated tetraphenylporphyrin using a solvothermal method. They have excitation-independent properties with a maximum emission at 692 nm. Studies showed that this unique near-infrared emission mainly originated from the aggregated molecular states of the CDs. The NIR-CDs showed good water solubility, exceptional biocompatibility, low toxicity, and superior cellular labelling ability. This work could significantly advance the structural design and preparation of NIR-CDs and corresponding bio-imaging applications.
碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响
刘玉婷, 李璐, 王嘉沛, 费滢洁, 刘牛顿, 吴刚平
2021, 36(3): 639-648.   doi: 10.1016/S1872-5805(21)60035-5
摘要(67) HTML(27) PDF(27)
摘要:
为改善炭纤维和聚碳酸酯界面结合性能,制备了含碳纳米管的水性聚碳酸酯上浆剂和水性聚氨酯上浆剂,通过上浆工艺将碳纳米管引至炭纤维表面。分别采用单丝段裂法和定向纤维增强聚合物基复合材料垂直方向拉伸两种方法从微观和宏观两个角度研究了上浆剂种类及碳纳米管含量对复合材料界面结合性能的影响。结果表明:上浆剂可明显改善炭纤维/聚碳酸酯复合材料界面结合性能,由于优异的成膜性,聚氨酯上浆剂改善效果更明显;碳纳米管的加入对复合材料的界面性能有一定改善,在微观评价方法中,碳纳米管改善效果显著,因为碳纳米管可有效阻止界面滑移;在宏观评价中,碳纳米管改善效果不明显,主要是上浆剂的界面黏结发挥作用。
超级电容器电极材料与电解液的研究进展
焦琛, 张卫珂, 苏方远, 杨宏艳, 刘瑞祥, 陈成猛
摘要(405) [PDF 1209 KB](3146)
摘要:
超级电容器具有高功率密度、长循环寿命、良好的低温使用性能和安全性的优点,已经广泛应用到电子产品、能量回收和储能等领域。电极材料和电解液是决定超级电容器性能的两大关键因素,超级电容器常用的电极材料包括碳质材料(活性炭、碳纳米管、石墨烯、炭纤维、纳米洋葱碳等)、金属氧化物(金属氢氧化物)、导电聚合物及复合材料等;电解液主要有水系电解液、有机系电解液与离子液体。本文综述了超级电容器电极材料与电解液的研究现状,详细介绍了电极材料、电解液的性能及优缺点,并对新型电极材料和电解液的研究趋势提出展望。
氧化石墨烯对水泥基复合材料微观结构和力学性能的影响
王琴, 王健, 吕春祥, 刘伯伟, 张昆, 李崇智
摘要(563) [PDF 2388 KB](414)
摘要:
研究了不同掺量下氧化石墨烯(GO)对水泥石以及胶砂微观结构和力学性能的影响。含16.5%水的水泥浆、0.05%GO及3倍于水泥的沙子共混物作为添加剂制备成砂浆。通过SEM、液氮吸附仪和一系列标准实验分别对水泥石的微观形态、孔隙结构、抗压抗折强度以及水泥净浆的流动度、黏度、凝结时间进行表征;考察不同GO掺量下水泥水化放热的变化情况。结果表明:GO对水泥浆有显著增稠和促凝作用;GO的掺入可以有效降低水泥的水化放热量;GO对水泥石有显著的增强增韧效果,28天龄期时,GO质量分数为0.05%的水泥石,3、7和28 d抗压强度和抗折强度同比对照组分别增加52.4%、46.5%、40.4%和86.1%、68.5%、90.5%,胶砂的抗压强度和抗折强度同比对照组分别增加43.2%、33%、24.4%和69.4%、106.4%、70.5%;GO在水泥硬化过程中对水泥石中晶体产物的产生有促进作用并能规整晶体的排布而形成针状晶体簇,改善水泥石中的孔结构,降低水泥石中微孔的体积,增加水泥石的密实度,对水泥石有显著地增强增韧效果。
抗烧蚀C/C复合材料研究进展
付前刚, 张佳平, 李贺军
摘要(785) [PDF 2126 KB](1256)
摘要:
C/C复合材料因优异的高温性能被认为是高温结构件的理想材料。然而,C/C复合材料在高温高速粒子冲刷环境下的氧化烧蚀问题严重制约其应用。因此,如何提高C/C复合材料的抗烧蚀性能显得尤为重要。笔者综述C/C复合材料抗烧蚀的研究现状。目前,提高C/C复合材料抗烧蚀性能的途径主要集中于优化炭纤维预制体结构、控制热解炭织构、基体中陶瓷掺杂改性和表面涂覆抗烧蚀涂层等4种方法。主要介绍以上4种方法的研究现状,重点介绍基体改性和抗烧蚀涂层的最新研究进展。其中,涂层和基体改性是提高C/C复合材料抗烧蚀性能的两种有效方法。未来C/C 复合材料抗烧蚀研究的潜在方向主要集中于降低制造成本、控制热解炭织构、优化掺杂的陶瓷相以及将基体改性和涂层技术相结合。
原位聚合法与溶液混合法制备石墨烯/聚酰亚胺复合材料及其性能
马朗, 王国建, 戴进峰
摘要(569) [PDF 2344 KB](1334)
摘要:
利用化学氧化还原法制备出石墨烯。通过原位聚合法及溶液混合法制备出石墨烯/聚酰亚胺复合材料,考察不同复合材料制备方法对其机械性能及导电性能的影响,并对其作用机理进行探讨。结果表明,制备的石墨烯为二维的单层或寡层材料,加入到聚酰亚胺中能够增强其机械性能及电导率。相比溶液混合法,采用原位聚合法时石墨烯在聚酰亚胺基体中分散更均匀,对其团聚作用有更好的抑制作用,制备的复合材料性能更优异。采用该法加入石墨烯的量为1.0 wt%时,拉伸强度达到了132.5 MPa,提高了68.8%;加入量增加到3.0 wt%时,电导率达6.87×10-4S·m-1,提高了8个数量级,对聚酰亚胺的性能有显著的增强作用。
工程应用C/C复合材料的性能分析与展望
苏君明, 周绍建, 李瑞珍, 肖志超, 崔红
摘要(679) [PDF 739 KB](1143)
摘要:
评价了中国40多年来在航天、航空、光伏、粉末冶金、工业高温炉领域成功应用的针刺C/C,正交3D C/C、径编C/C、穿刺C/C、轴编C/C等五类C/C复合材料的物理、力学、热学、烧蚀、摩擦磨损、使用寿命等性能及特点,并与其他国家相应材料性能进行分析对比,为建立工程应用C/C复合材料共享的数据库平台奠定基础。揭示了炭纤维预制体、炭基体类型、界面结合状态与材料性能的关联度。指出炭纤维预制体结构单元精细化研究和其结构的梯度设计,以及炭基体的优化组合匹配技术,仍是C/C复合材料性能稳定化提升的重点研究方向。
多孔掺磷碳纳米管:磷酸水热合成及其在氧还原和锂硫电池中的应用
郭梦清, 黄佳琦, 孔祥屹, 彭翃杰, 税晗, 钱方圆, 朱林, 朱万诚, 张强
摘要(435) [PDF 2507 KB](664)
摘要:
碳纳米管优异的物理性质和可调的化学组成使其拥有广泛的应用前景。采用低温过程在碳骨架中引入磷原子预期带来可调的化学特性。本研究采用170℃下水热处理碳纳米管-磷酸混合物获得磷掺杂的碳纳米管。磷掺杂的碳管的磷含量为1.66%,比表面积为132 m2/g,热失重峰在纯氧环境下提升至694℃。当掺磷碳纳米管用于氧还原反应时,其起始电位为-0.20 V,电子转移数为2.60,反应电流显著高于无掺杂的碳纳米管。当其用作锂硫电池正极导电材料时,电极的起始容量为1106 mAh/g,电流密度从0.1 C提升至1 C时容量保留率为80%,100次循环的衰减率为每圈0.25%。
氧化石墨烯水泥浆体流变性能的定量化研究
王琴, 王健, 吕春祥, 崔鑫有, 李时雨, 王皙
摘要(442) [PDF 3710 KB](682)
摘要:
采用流变仪和激光共聚焦显微镜对不同氧化石墨烯(GO)掺量的新拌水泥浆体的流变参数以及浆体微观形态进行了定量化研究,并采用Modified-Bingham(M-B)模型和Herschel-Bulkley(H-B)模型对所测数据进行了拟合处理,提出了GO影响新拌水泥浆体的作用机理。结果表明,GO的掺入可以使新拌浆体中在减水剂作用下分散的水泥颗粒发生再次凝聚,形成重组絮凝结构,且随着GO掺量的增加,重组絮凝结构的数量越多,从而使得浆体流变性发生显著变化。一方面,新拌浆体的塑性粘度、屈服应力以及触变性随GO掺量的提高而显著增加。另一方面,GO的掺入提高了新拌浆体的临界剪切速率,使其在较大剪切速率下的流变行为仍然表现为剪切变稀;降低了浆体的剪切增稠程度,提高了浆体的稳定性。
石墨烯/聚合物复合材料的研究进展及其应用前景
曾尤, 王函, 成会明
摘要(482) [PDF 3574 KB](1557)
摘要:
随着石墨烯低成本宏量制备技术的突破,石墨烯的工业化应用进程已引起人们广泛关注。本文介绍了石墨烯在聚合物基复合材料领域的研究进展,侧重阐述石墨烯/聚合物复合材料在力学增强、导电/导热网络构建、防腐阻燃等方面的代表性研究成果,同时对商业化石墨烯产品及其复合材料应用进行了简单评述,探讨了石墨烯/聚合物复合材料领域目前存在的主要问题及未来发展趋势。
凹凸棒石/炭对低浓度亚甲基蓝的吸附性能
吴雪平, 徐艳青, 张先龙, 吴玉程, 高鹏
摘要(644) [PDF 2861 KB](1062)
摘要:
通过水热处理凹凸棒石和纤维素获得凹凸棒石/炭纳米复合材料,研究该复合材料对亚甲基蓝的吸附性能。考察吸附条件对吸附行为的影响,以及吸附动力学和热力学研究。亚甲基蓝的吸附行为符合二级吸附速率方程,吸附等温方程符合Langmuir方程。吸附热力学参数的计算值表明,亚甲基蓝在该复合材料上的吸附是自发、吸热的过程。
石墨烯/炭黑杂化材料:新型、高效锂离子电池二元导电剂
李用, 吕小慧, 苏方远, 贺艳兵, 李宝华, 杨全红, 康飞宇
摘要(629) [PDF 954 KB](1560)
摘要:
采用CTAB为表面活性剂将氧化石墨烯和炭黑均匀分散,经水热过程将二者组装到一起,进而高温热处理得到石墨烯/炭黑杂化材料。该材料是一种具有独特结构和良好性能的石墨烯/炭黑杂化材料作为锂离子电池二元导电剂。炭黑颗粒均匀分布在石墨烯表面,可防止石墨烯片层团聚并进一步提高电子导电效率。由于炭黑可增加对电解液的吸附,促进电极内部锂离子的传输过程,最终提高锂离子电池的倍率性能。结果表明,使用质量分数5% 900 ℃热处理之后的二元导电剂的LiFePO4,在10 C时比容量为73 mAh/g,优于使用10%炭黑导电剂时的LiFePO4 (10 C比容量为62 mAh/g)。按照整个电极质量计算,前者的比容量性能比后者提高了近25%,同时在循环性能方面,前者的稳定性也优于后者。
自组装软模板法制备有序中孔炭研究进展
黄正宏| 王 磊| 白 宇| 康飞宇
摘要(1713) PDF(10258)
摘要:
通过介绍自组装软模板法制备有序中孔炭的发展历程和基本原理,说明该方法具有操作简单、成本低、易于控制等优点。重点评述了自组装软模板法制备有序中孔炭在产物形貌控制和多级孔结构制备方面的研究进展,分析认为,今后的研究可以在拓展前驱体范围、提高宏观产物柔韧性以及导电性等方面得到进一步发展。
石墨烯的化学气相沉积法制备
任文才, 高力波, 马来鹏, 成会明
摘要(2154) PDF(6056)
摘要:
化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CVD法制备石墨烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。