留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温CVD法制备石墨烯的研究进展

王佳斌 任壮 侯莹 闫晓丽 刘培植 张华 章海霞 郭俊杰

王佳斌, 任壮, 侯莹, 闫晓丽, 刘培植, 张华, 章海霞, 郭俊杰. 低温CVD法制备石墨烯的研究进展[J]. 新型炭材料, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
引用本文: 王佳斌, 任壮, 侯莹, 闫晓丽, 刘培植, 张华, 章海霞, 郭俊杰. 低温CVD法制备石墨烯的研究进展[J]. 新型炭材料, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
WANG Jia-bin, REN Zhuang, HOU Ying, YAN Xiao-li, LIU Pei-zhi, ZHANG Hua, ZHANG Hai-xia, GUO Jun-jie. A review of graphene synthesis at low temperatures by CVD methods[J]. NEW CARBON MATERIALS, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X
Citation: WANG Jia-bin, REN Zhuang, HOU Ying, YAN Xiao-li, LIU Pei-zhi, ZHANG Hua, ZHANG Hai-xia, GUO Jun-jie. A review of graphene synthesis at low temperatures by CVD methods[J]. NEW CARBON MATERIALS, 2020, 35(3): 193-208. doi: 10.1016/S1872-5805(20)60484-X

低温CVD法制备石墨烯的研究进展

doi: 10.1016/S1872-5805(20)60484-X
基金项目: 国家自然科学基金(51701137,51703150);山西省自然科学基金(201701D121043);山西省高等学校科技创新项目(2019L0253).
详细信息
    通讯作者:

    张华.E-mail:zhanghua01@tyut.edu.cn;章海霞.E-mail:zhanghaixia@tyut.edu.cn;郭俊杰.E-mail:guojunjie@tyut.edu.cn

  • 中图分类号: TQ127.1+1

A review of graphene synthesis at low temperatures by CVD methods

Funds: National Natural Science Foundation of China(51701137, 51703150), Natural Science Foundation of Shanxi Province(201701D121043), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (2019L0253).
  • 摘要: 石墨烯是一种由sp2杂化碳原子组成的二维碳纳米材料。由于其特殊的性质,在世界范围内引起了广泛的关注和研究。化学气相沉积法(CVD)是制备石墨烯最有效、最常用的方法。然而,传统的CVD石墨烯生长温度非常高(1 000℃),这不仅使得石墨烯制备成本高,而且限制了其在某些领域的应用。因此,低温下石墨烯的合成是目前研究者关注的焦点。前驱体类型(气态、液态、固态)和衬底类型(过渡金属、合金、介质衬底)是影响石墨烯合成温度的重要因素。本文将从以上几个方面对低温条件下CVD合成石墨烯的研究结果进行综述。
  • Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
    Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8):2458-2462.
    Li C, Shi G. Three-dimensional graphene architectures[J]. Nanoscale, 2012, 4(18):5549-5563.
    Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters, 2010, 10(12):4863-4868.
    Yang K, Zhang S, Zhang G, et al. Graphene in mice:ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters, 2010, 10(9):3318-3323.
    Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33):10876-+.
    Li X, Colombo L, Ruoff R S. Synthesis of graphene films on copper foils by chemical vapor deposition[J]. Advanced Materials, 2016, 28(29):6247-6252.
    Li X, Magnuson C W, Venugopal A, et al. Graphene films with large domain size by a two-step chemical vapor deposition process[J]. Nano Letters, 2010, 10(11):4328-4334.
    Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8):574-578.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials, 2009, 8(3):203-207.
    Ruan G, Sun Z, Peng Z, et al. Growth of graphene from food, insects, and waste[J]. ACS Nano, 2011, 5(9):7601-7607.
    Sharma S, Kalita G, Hirano R, et al. Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition[J]. Carbon, 2014, 72:66-73.
    Reina A, Thiele S, Jia X, et al. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces[J]. Nano Research, 2010, 2(6):509-516.
    Muñoz R, Gómez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chemical Vapor Deposition, 2013, 19(10-11-12):297-322.
    Geim A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.
    Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(1):30-35.
    Li X, Cai W, Jung I, et al. Synthesis, characterization, and properties of large-area graphene films[J]. ECS Transactions, 2009, 19(5):41-+.
    Zhu M, Du Z, Yin Z, et al. Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(1):502-510.
    Mafra D L, Olmos-Asar J A, Negreiros F R, et al. Ambient-pressure CVD of graphene on low-index Ni surfaces using methane:a combined experimental and first-principles study[J]. Physical Review Materials, 2018, 2(7).
    Chaitoglou S, Bertran E. Effect of temperature on graphene grown by chemical vapor deposition[J]. Journal of Materials Science, 2017, 52(13):8348-8356.
    Rybin M G, Kondrashov I I, Pozharov A S, et al. In situ control of CVD synthesis of graphene film on nickel foil[J]. Physica Status Solidi (B), 2018, 255(1):1700414.
    Naghdi S, Nešovi? K, Miškovi?-Stankovi? V, et al. Comprehensive electrochemical study on corrosion performance of graphene coatings deposited by chemical vapour deposition at atmospheric pressure on platinum-coated molybdenum foil[J]. Corrosion Science, 2018, 130:31-44.
    Chen C-S, Hsieh C-K. Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition[J]. Thin Solid Films, 2015, 584:265-269.
    Losurdo M, Giangregorio M M, Capezzuto P, et al. Graphene CVD growth on copper and nickel:role of hydrogen in kinetics and structure[J]. Physical Chemistry Chemical Physics:PCCP, 2011, 13(46):20836-20843.
    Li Z, Wu P, Wang C, et al. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources[J]. ACS Nano, 2011, 5(4):3385-3390.
    Kang C, Jung D H, Lee J S. Atmospheric pressure chemical vapor deposition of graphene using a liquid benzene precursor[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(11):9098-9103.
    Kim B J, Nasir T, Choi J-Y. Direct growth of graphene at low temperature for future device applications[J]. Journal of the Korean Ceramic Society, 2018, 55(3):203-223.
    Naghdi S, Rhee K Y, Park S J. A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition:Low temperature growth[J]. Carbon, 2018, 127:1-12.
    Kairi M I, Khavarian M, Bakar S A, et al. Recent trends in graphene materials synthesized by CVD with various carbon precursors[J]. Journal of Materials Science, 2017, 53(2):851-879.
    Lee K, Ye J. Significantly improved thickness uniformity of graphene monolayers grown by chemical vapor deposition by texture and morphology control of the copper foil substrate[J]. Carbon, 2016, 100:441-449.
    Sun X, Lin L, Sun L, et al. Low-temperature and rapid growth of large single-crystalline graphene with ethane[J]. Small, 2018, 14(3).
    Weatherup R S, Dlubak B, Hofmann S. Kinetic control of catalytic CVD for high-quality graphene at low temperatures[J]. ACS Nano, 2012, 6(11):9996-10003.
    Martin M B, Dlubak B, Weatherup R S, et al. Protecting nickel with graphene spin-filtering membranes:a single layer is enough[J]. Applied Physics Letters, 2015, 107(1):012408.
    Zhang B, Lee W H, Piner R, et al. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils[J]. ACS Nano, 2012, 6(3):2471-2476.
    Zhang J, Li J, Wang Z, et al. Low-temperature growth of large-area heteroatom-doped graphene film[J]. Chemistry of Materials, 2014, 26(7):2460-2466.
    Jang J, Son M, Chung S, et al. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure[J]. Scientific Reports, 2015, 5:17955.
    Choubak S, Biron M, Levesque P L, et al. No graphene etching in purified hydrogen[J]. The Journal of Physical Chemistry Letters, 2013, 4(7):1100-1103.
    Dransfield T J, Perkins K K, Donahue N M, et al. Temperature and pressure dependent kinetics of the gas-phase reaction of the hydroxyl radical with nitrogen dioxide[J]. Geophysical Research Letters, 1999, 26(6):687-690.
    Guermoune A, Chari T, Popescu F, et al. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors[J]. Carbon, 2011, 49(13):4204-4210.
    Miyata Y, Kamon K, Ohashi K, et al. A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling[J]. Applied Physics Letters, 2010, 96(26):263105.
    Sun Z, Yan Z, Yao J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323):549-552.
    Weatherup R S, Baehtz C, Dlubak B, et al. Introducing carbon diffusion barriers for uniform, high-quality graphene growth from solid sources[J]. Nano Letters, 2013, 13(10):4624-4631.
    Lee E, Lee H C, Jo S B, et al. Heterogeneous solid carbon source-assisted growth of high-quality graphene via CVD at low temperatures[J]. Advanced Functional Materials, 2016, 26(4):562-568.
    Gan X, Zhou H, Zhu B, et al. A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils[J]. Carbon, 2012, 50(1):306-310.
    Choi J H, Li Z, Cui P, et al. Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force[J]. Scientific Reports, 2013, 3:1925.
    Sutter P, Sadowski J T, Sutter E. Graphene on Pt(111):growth and substrate interaction[J]. Physical Review B, 2009, 80(24).
    Gao L, Ren W, Xu H, et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nature Communications, 2012, 3:699.
    Kwon S-Y, Ciobanu C V, Petrova V, et al. Growth of semiconducting graphene on palladium[J]. Nano Letters, 2009, 9(12):3985-3990.
    Zeller P, Weinl M, Speck F, et al. Single crystalline metal films as substrates for graphene growth[J]. Annalen der Physik, 2017, 529(11):1700023.
    Park H J, Meyer J, Roth S, et al. Growth and properties of few-layer graphene prepared by chemical vapor deposition[J]. Carbon, 2010, 48(4):1088-1094.
    Pan Y, Zhang H, Shi D, et al. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru(0001)[J]. Advanced Materials, 2009, 21(27):2739-2739.
    Gao J, Zhao J, Ding F. Transition metal surface passivation induced graphene edge reconstruction[J]. Journal of the American Chemical Society, 2012, 134(14):6204-6209.
    Wang B, Zhang Y, Chen Z, et al. High quality graphene grown on single-crystal Mo(110) thin films[J]. Materials Letters, 2013, 93:165-168.
    Xue Y, Wu B, Guo Y, et al. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition[J]. Nano Research, 2011, 4(12):1208-1214.
    Fu Z, Zhang Y, Yang Z. Growth mechanism and controllable synthesis of graphene on Cu-Ni alloy surface in the initial growth stages[J]. Physics Letters A, 2015, 379(20-21):1361-1365.
    Tyagi P, Robinson Z R, Munson A, et al. Characterization of graphene films grown on CuNi foil substrates[J]. Surface Science, 2015, 634:16-24.
    Weatherup R S, Bayer B C, Blume R, et al. In situ characterization of alloy catalysts for low-temperature graphene growth[J]. Nano Letters, 2011, 11(10):4154-4160.
    Li X, Cai W, Colombo L, et al. Evolution of graphene growth on Ni and Cu by carbon isotope labeling[J]. Nano Letters, 2009, 9(12):4268-4272.
    Ago H, Ogawa Y, Tsuji M, et al. Catalytic growth of graphene:toward large-area single-crystalline graphene[J]. The Journal of Physical Chemistry Letters, 2012, 3(16):2228-2236.
    Zheng L, Cheng X, Ye P, et al. Decreasing graphene synthesis temperature by catalytic metal engineering and thermal processing[J]. RSC Advances, 2018, 8(3):1477-1480.
    Yoon H, Shin D S, Kim T G, et al. Facile synthesis of graphene on Cu nanowires via low-temperature thermal CVD for the transparent conductive electrode[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):13888-13896.
    Kumar A, Khan S, Zulfequar M, et al. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD[J]. Applied Surface Science, 2017, 402:161-167.
    Chan S-H, Chen S-H, Lin W-T, et al. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition[J]. Nanoscale Research Letters, 2013, 8.
    Addou R, Dahal A, Sutter P, et al. Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition[J]. Applied Physics Letters, 2012, 100(2):021601.
    Weatherup R S, Amara H, Blume R, et al. Interdependency of subsurface carbon distribution and graphene-catalyst interaction[J]. Journal of the American Chemical Society, 2014, 136(39):13698-13708.
    Martinez-Gordillo R, Varvenne C, Amara H, et al. Ni2C surface carbide to catalyze low-temperature graphene growth[J]. Physical Review B, 2018, 97(20).
    Cui T, Lv R, Huang Z-H, et al. Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells[J]. Nanoscale Research Letters, 2012, 7.
    Qi J, Zhang L, Cao J, et al. Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition[J]. Chinese Science Bulletin, 2012, 57(23):3040-3044.
    Kim J, Ishihara M, Koga Y, et al. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition[J]. Applied Physics Letters, 2011, 98(9):091502.
    Yamada T, Ishihara M, Kim J, et al. A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294 mm width graphene films at low temperature[J]. Carbon, 2012, 50(7):2615-2619.
    Scott A, Dianat A, Börrnert F, et al. The catalytic potential of high-k dielectrics for graphene formation[J]. Applied Physics Letters, 2011, 98(7):073110.
    Liu X, Lin T, Zhou M, et al. A novel method for direct growth of a few-layer graphene on Al2O3 film[J]. Carbon, 2014, 71:20-26.
    Kwak J, Chu J H, Choi J K, et al. Near room-temperature synthesis of transfer-free graphene films[J]. Nature Communications, 2012, 3:645.
    Yan Z, Peng Z, Tour J M. Chemical vapor deposition of graphene single crystals[J]. Accounts of Chemical Research, 2014, 47(4):1327-1337.
    Chen J, Guo Y, Wen Y, et al. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates[J]. Advanced Materials, 2013, 25(7):992-997.
    Zhuo Q-Q, Wang Q, Zhang Y-P, et al. Transfer-free synthesis of doped and patterned graphene films[J]. ACS Nano, 2015, 9(1):594-601.
    Ruemmeli M H, Bachmatiuk A, Scott A, et al. Direct low-temperature nanographene CVD synthesis over a dielectric insulator[J]. ACS Nano, 2010, 4(7):4206-4210.
    Zhang L, Shi Z, Wang Y, et al. Catalyst-free growth of nanographene films on various substrates[J]. Nano Research, 2010, 4(3):315-321.
    Yang W, He C, Zhang L, et al. Growth, characterization, and properties of nanographene[J]. Small, 2012, 8(9):1429-1435.
    Wei D, Lu Y, Han C, et al. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices[J]. Angewandte Chemie, 2013, 52(52):14121-14126.
    Adhikari S, Aryal H R, Uchida H, et al. Catalyst-free growth of graphene by microwave surface wave plasma chemical vapor deposition at low temperature[J]. Journal of Materials Science and Chemical Engineering, 2016, 04(03):10-14.
    Ma Y, Jang H, Kim S J, et al. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process[J]. Nanoscale Research Letters, 2015, 10(1):1019.
    Munoz R, Gomez-Aleixandre C. Fast and non-catalytic growth of transparent and conductive graphene-like carbon films on glass at low temperature[J]. Journal of Physics D-Applied Physics, 2014, 47(4).
    Chen Y-Z, Medina H, Tsai H-W, et al. Low temperature growth of graphene on glass by carbon-enclosed chemical vapor deposition process and its application as transparent electrode[J]. Chemistry of Materials, 2015, 27(5):1646-1655.
  • 加载中
图(1)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  55
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回