Abstract:
Multi-wall carbon nanotubes (CNTs) were modified by nano-TiC using a pressureless spark plasma sintering technology. The TiC-modified CNTs (T-CNTs) were added to mesocarbon microbeads (MCMBs) to prepare high performance isostatically pressed graphite materials. The structures of the T-CNTs and the prepared isotropic graphite materials were characterized by XRD, SEM and TEM. The mechanical and thermal properties of isotropic graphite reinforced by T-CNTs were measured by a micro-controlled electronic universal testing machine, laser thermal conductivity meter and thermal expansion coefficient meter. Results showed that the nano-TiC was successfully grown on the surface of CNTs. Compared with the isotropic graphite prepared from MCMBs without T-CNTs, the isotropic graphite with T-CNTs has a significant improvement in physical properties (density, open porosity and volume shrinkage). Its flexural strength and degree of graphitization increased by 70% and 10%, respectively, and the thermal properties were also improved to some degree.