介孔炭材料应用于电化学催化的研究进展

Recent progress on mesoporous carbon materials used in electrochemical catalysis

  • 摘要: 由于介孔炭材料具有高比表面、均一可调的孔径尺寸和形貌、良好的导电性和化学稳定性等优点,已被广泛应用到催化、吸附、分离和电化学储能等领域。近年来,多组分的掺杂与复合使介孔炭材料拥有可调变的功能性,已成为材料领域研究的一个热点。本文首先介绍介孔炭材料的合成,包括软模板法、硬模板法和无模板法等。接着论述介孔炭及其复合材料在电化学催化领域的应用,主要包括杂原子掺杂介孔炭材料以及介孔炭材料与金属化合物的复合材料在电化学催化氧还原(ORR)、析氧(OER)、析氢(HER)等领域的研究进展。此外还论述了此类材料在电催化有机合成上的应用。最后对介孔炭及其复合材料在电化学催化上的发展趋势进行了展望。

     

    Abstract: Because of their advantages of high specific surface area, uniform and adjustable pore size and shape, and good electrical conductivity and chemical stability, mesoporous carbon materials have been widely used in the fields of catalysis, adsorption, gas separation and electrochemical energy storage. In recent years, doping and hybridizing multi-components with mesoporous carbon materials has given them tunable functionality, making them a hot topic in the field of materials science. This review first introduces strategies for the synthesis of mesoporous carbon materials by the soft-templating, hard-templating and template-free methods. Recent progress on mesoporous carbons and their composites used in electrochemical catalysis are then summarized, including heteroatom-doped mesoporous carbons and their composites with metal compounds. Their use in electrochemical catalysis includes the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction. Their use in organic electrocatalytic synthesis is also discussed. Finally, trends in the development of mesoporous carbons and their composites in electrochemical catalysis are considered.

     

/

返回文章
返回