多孔炭:一种在电芬顿与类芬顿反应中受青睐的材料

Porous carbons for use in electro-Fenton and Fenton-like reactions

  • 摘要: 类芬顿反应,因其能够克服传统芬顿反应工作pH范围较窄,易产生大量铁泥的局限而受到了大量关注。尽管炭材料在无驱动力时,同过氧化氢的反应活性不佳,多孔炭材料在类芬顿反应中依然得到了广泛应用。在各种研究中,这些多孔炭材料扮演了多种不同角色,诸如吸附剂、金属材料载体、以及过氧化氢选择性电合成的催化剂。本综述中,讨论了近年里多孔材料在上述情况的研究进展。由于成熟的合成工艺,很高的化学及热稳定性以及多样的功能,多孔炭材料已成为一种应用广泛的材料。在类芬顿过程中,更是有助于电子与物质的转移,防止金属泄露,并较大地提升了反应效率。

     

    Abstract: Electro-Fenton, photo-Fenton and Fenton-like reactions are important advanced oxidation processes for waste water treatment, which overcome the limitations of a narrow pH range and excessive iron sludge production in the classic Fenton reaction and have received great attention in the last few decades. The porous carbons in these Fenton-like reaction systems act as catalyst carriers to disperse active species, and as adsorbents to enrich reactants. They promote electron and mass transfer, prevente metal leaching and improve the efficiency of contaminant removal. They also promote the production and activation of hydrogen peroxide in electro-Fenton reactions and inhibit the recombination rate of electron/hole pairs in photo-Fenton reactions. There are well-developed synthesis methods for porous carbons, giving them different functionalities, and a high chemical and thermal stability, making them favored materials for use in these reactions. Recent developments in these fields are discussed.

     

/

返回文章
返回