留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基集流体材料在钠金属负极中的应用

王艳 朱铭 刘昊轩 张远俊 吴宽 王官耀 吴超

王艳, 朱铭, 刘昊轩, 张远俊, 吴宽, 王官耀, 吴超. 碳基集流体材料在钠金属负极中的应用. 新型炭材料(中英文), 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X
引用本文: 王艳, 朱铭, 刘昊轩, 张远俊, 吴宽, 王官耀, 吴超. 碳基集流体材料在钠金属负极中的应用. 新型炭材料(中英文), 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X
WANG Yan, ZHU Ming, LIU Hao-xuan, ZHANAG Yuan-jun, WU Kuan, WANG Guan-yao, WU Chao. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater., 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X
Citation: WANG Yan, ZHU Ming, LIU Hao-xuan, ZHANAG Yuan-jun, WU Kuan, WANG Guan-yao, WU Chao. Carbon-based current collector materials for sodium metal anodes. New Carbon Mater., 2022, 37(1): 93-108. doi: 10.1016/S1872-5805(22)60581-X

碳基集流体材料在钠金属负极中的应用

doi: 10.1016/S1872-5805(22)60581-X
基金项目: 中国博士后科学基金会,面上项目(2020M681260)。
详细信息
    作者简介:

    王艳:王 艳,硕士研究生. E-mail:wy116@shu.edu.cn

    朱 铭,博士研究生. E-mail:mz604@uowmail.edu.au,王艳,朱铭为共同第一作者

    通讯作者:

    吴 宽,博士. E-mail:wkingzzz@shu.edu.cn

    吴 超,研究员. E-mail:chaowu@uow.edu.au

  • 中图分类号: TQ127.1+1

Carbon-based current collector materials for sodium metal anodes

Funds: China Postdoctoral Science Foundation (2020M681260).
More Information
  • 摘要: 室温钠离子二次电池是锂离子二次电池最有可能的替代品,也被认为是大规模能量存储技术的最有前景的选择之一。金属钠具有超高的理论容量以及低的氧化还原电位,因此被认为是最有前景的高比能钠离子电池的负极材料。然而,钠金属负极的应用仍面临一些挑战性,如钠枝晶的生长、钠金属与电解液之间的副反应、充放电过程中大的体积膨胀等。其中,钠枝晶生长不仅可以产生“死”钠和加速钠金属与电解液之间的副反应,导致容量的快速衰减,而且可能刺穿隔膜,引发电解液燃烧、电池爆炸等严重的安全问题。炭材料家族成员众多,可具有高机械强度、轻质量、高导电性、大比表面积和良好的化学稳定性等特性,近年来被广泛报道用于钠金属负极的集流体的研究。本文综述了最新的碳基集流体材料在钠金属负极上的研究进展,分析了碳基集流体的界面、结构与钠金属负极性能之间的关系,最后并对碳基集流体的未来研究面临的问题进行了展望。
  • FIG. 1218.  FIG. 1218.

    FIG. 1218..  FIG. 1218.

    图  1  钠金属电池示意图

    Figure  1.  Schematic illustration of sodium metal batteries.

    图  2  应用于钠金属负极上的碳基材料

    Figure  2.  Carbon-based materials for sodium metal anodes.

    图  3  (a) Na金属负极和Na/NSCNT负极上的金属Na沉积/剥离示意图[84]. (b) 在1 mA cm−2、1 mAh cm−2的循环条件下,钠金属在铜箔、铝箔、CNT纸和NSCNT纸上沉积/剥离的库伦效率[84]. (c) Na金属在铜箔衬底上的沉积行为[85]. (d) Na 金属在Of-CNT网络上沉积行为,其中金属Na不仅可以在Of-CNT骨架上生长,还可以填补网络中的空隙,形成无树突的形态. (e) 在1 mA cm−2和1 mAh cm−2下和 (f)在5 mA cm−2和10 mAh cm−2下的Na@Of-CNT、Na@p-CNT和Na@Cu基底上的钠沉积/剥离对应的库伦效率图[85]

    Figure  3.  (a) Schematic illustration of the metallic Na striping/plating on Na metal and Na/NSCNT anodes[84]. (b) Coulombic efficiencies (CE) of Na plating/stripping on Cu foil, Al foil, CNT paper, and NSCNT paper at 1 mA cm−2 and 1 mAh cm−2[84]. Na stripping behavior on the (c) Cu foil and (d) Of-CNT networks[85]. Na can not only grow on the Of-CNT skeleton, but also fulfill the voids within the network, forming a dendrite-free morphology. The corresponding CE of the Na@Of-CNT, Na@p-CNT, and Na@Cu at (e) 1 mAh cm−2 and 1 mA cm−2 and (f) at 10 mAh cm−2 and 5 mA cm−2, respectively[85]. Reprinted with permission.

    图  4  (a) Li/Na金属箔的失效机制[88]. (b) 由同轴CF组成的三维Li/Na-CF骨架示意图. (c) 炭纤维上表面的Li/Na沉积/剥离行为. (d) 纯Na对称电池(橙色)和Na-CF对称电池(黑色)在0.5 mA cm−2和1 mAh cm−2条件下的电压分布图[88]. (e) 氮和氧共掺杂石墨化碳纤维电极和(f) 石墨化碳纤维电极上的Na成核和沉积过程的示意图[89]. (g) GCF电极和(h) DGCF电极在1 mA cm−2、8 mAh cm−2条件下的电压-容量曲线. 在(i) 1 mA cm−2和(j) 2 mA cm−2下GCF电极和DGCF电极上的Na沉积/剥离的库伦效率图[89]

    Figure  4.  (a) Failure mechanisms of bare Li/Na metal foil [88]. (b) Schematic of the designed 3D Li/Na–CF framework composed of coaxial CFs. (c) Li/Na stripping/plating behavior on the coated carbon fibers. (d) Voltage profiles of bare Na symmetric cells (orange) and Na–CF symmetric cells (black) at 0.5 mA cm−2 and1 mAh cm−2[88]. Schematic illustration of the Na nucleation and plating process on (e) a nitrogen and oxygen co-doped graphitized carbon-fiber electrode and (f) a graphitized carbon-fiber electrode [89]. Voltage-capacity curves of the (g) GCF electrode and (h) DGCF electrode at 1 mA cm−2 and 8 mAh cm−2. CE of Na plating/stripping on the GCF and DGCF electrodes at (i) 1 mA cm−2 and (j) 2 mA cm−2[89]. Reprinted with premission.

    图  5  (a) Na@r-GO复合材料制备示意图[93]. (b) Na//Na和Na@r-GO//Na@r-GO对称电池的循环性能图[93]. (c) NaF/SnO2@rGO的制备示意图[94].(d) 在1 mA cm−2和0.5 mAh cm−2时和(e) 在1 mA cm−2和4 mAh cm−2时rGO、SnO2@rGO和NaF/SnO2@rGO的库伦效率,(f) 在0.5 mA cm−2和1 mAh cm−2时,rGO、SnO2@rGO和NaF/SnO2@rGO对称电池Na沉积/剥离循环的电压分布图[94]. (g) Na@rGa复合负极的合成示意图[95],(h) 在5 mA cm−2和1mAh cm−2时Na@rGa复合负极与纯Na金属电极对称电池的电化学性能图[95]

    Figure  5.  (a) Schematic representation of the preparation of Na@r-GO composites[93]. (b) Cycling of symmetric Na/Na and Na@r-GO/Na@r-GO cells[93]. (c) Schematic diagram of the preparation of NaF/SnO2@rGO[94]. The corresponding CE of rGO, SnO2@rGO, and NaF/SnO2@rGO (d) at 1 mA cm−2 and 0.5 mAh cm−2 and (e) at1 mA cm−2 at 4 mAh cm−2. (f) Voltage profiles of Na plating/stripping in the symmetric cells at 0.5 mA cm−2 and 1 mAh cm−2[94]. (g) Synthetic illustration of Na@rGa composite anode[95]. (h) Electrochemical performances of symmetric cells using Na@rGa composite anode and bare Na metal anode at 5 mA cm−2 and 1.0 mAh cm−2[95]. Reprinted with permission.

    图  6  (a) 石墨电极在不同的钠化阶段的示意图及顶部SEM照片[98]. (b) 在2 mA cm−2和2 mAh cm−2条件下,石墨、软碳、硬碳和裸铜电极上金属钠的沉积/剥离的库伦效率. (c) 在电流密度分别为1和5 mA cm−2时,石墨电极上金属钠沉积/剥离的库伦效率[98].(d) Ni粒子和NCG粒子的充电过程示意图[99]。(e) 在190 °C下,Na-NCG电池的能量密度和能量效率[99]

    Figure  6.  (a) Illustration and SEM top views of graphite electrodes at different sodiated stages[98]. (b) CE of Na deposition/stripping on graphite, soft carbon, hard carbon and bare Cu electrodes at 2 mA cm−2 and 2 mAh cm−2. (c) CE of Na deposition/stripping on graphite at 1 mA cm−2 and 5 mA cm−2[98]. (d) Schematic view of the charging process for nickel (Ni) particles and NCG particles[99]. (e) Energy densities and energy efficiency of Na-NCG cells at 190 °C[99]. Reprinted with permission.

    图  7  (a) Li和Na金属/碳毡复合材料的制备过程示意图[100]. (b) 在Cu电极和纳米富碳结构修饰电极上的锂沉积/剥离行为. (c) 在1 mA cm−2电流密度下 和 (d) 在3 mA cm−2电流密度下钠/碳复合材料(绿色)和裸钠电极(橙色)对称电池的循环稳定性[100]. (e) Na/C复合负极合成示意图[104],(f) Na/C复合电极(红色)和纯Na金属电极(蓝色)对称电池的循环稳定性对比图[104]

    Figure  7.  (a) Schematic showing the fabrication process of the Li and Na metal/carbon composites[100]. (b) Li plating/stripping behavior on a Cu electrode and a nanocrevasse-rich carbon structure-modified electrode. Comparison of the cycling stabilities of the Na/carbon composite (green) and bare Na electrode (orange) symmetrical cells at (c) 1 mA cm−2 and (d) 3 mA cm−2[100]. (e) Schematic of Na/C anode fabrication process[104]. (f) Comparison of the cycling stability of the Na/C composite (red) and bare Na electrode (blue) symmetrical cell[104]. Reprinted with permission.

    图  8  (a) Na-wood复合电极的合成示意图[105]. (b) 在1 mA cm−2条件下纯钠和Na-wood电极的对称电池电压-时间图[105]. (c)废弃椰壳制备3D O-CCF材料的示意图[106],(d) 5 mA cm−2和10 mAh cm−2 条件下和(e) 在5 mA cm−2和5 mAh cm−2条件下 3D O-CCF和纯铜电极的库伦效率[106]. (f) Na-HCN电极及Na-Cu电极在1 mA cm−2,1 mAh cm−2条件下的库伦效率[107],(g) Na-HCN电极在3 mA cm−2,3 mAh cm−2条件下的库伦效率[107]

    Figure  8.  (a) Schematic diagram of the preparation of Na-carbonized wood (Na−wood) composite electrodes[104]. (b) Voltage-time diagram of symmetric cells using Na@rGa composite anode and bare Na metal anode at 5 mA cm−2 and 1 mAh cm−2[104]. (c) Fabrication schematic of 3D O-CCF matrix [106]. (d) The CE of 3D O-CCF and bare Cu d) at 5 mA cm−2 and 5 mAh cm−2 (e) at 5 mA cm−2 and 10 mAh cm−2[106]. (f) CE of Na-HCN electrode and Na-Cu electrode at 1 mA cm−2 for 1 mAh cm−2[107], (g) CE of Na-HCN electrode at 3 mA cm−2 for 3 mAh cm−2[107]. Reprinted with permission.

    图  9  (a) C@Sb NPs的合成以及C@Sb@Cu上的钠沉积/剥离行为示意图[73]. (b) 在1 mA cm−2和4 mAh cm−2 和 (c) 在2 mA cm−2和4 mAh cm−2条件下,纯铜和C@Sb@Cu层的钠沉积/剥离的库伦效率[73]. (d) CoNC和NC上的Na沉积示意图[110].(e) 在1 mA cm−2和1 mAh cm−2条件下CoNC和NC电极的库伦效率[110]

    Figure  9.  (a) Schematic illustration for the synthesis of C@Sb NPs and the sodium plating/stripping on C@Sb@Cu foil[73]. CE of sodium plating/stripping for the cells using bare Cu and C@Sb@Cu foils (b) at 1 mA cm−2 and 4 mAh cm−2and (c) at 2 mA cm−2 and 4 mAh cm−2 [73]. (d) Schematic illustration of Na deposition on CoNC and NC [110]. (e) CE of CoNC and NC at 1 mA cm−2 and 1 mAh cm−2 [110]. Reprinted with permission.

    表  1  基于碳基集流体和其他集流体材料的钠金属对称电池性能总结

    Table  1.   Summary of properties of Na metal-symmetric batteries based on carbon-based collector and other collector materials.

    Material and
    structure design
    Current density
    (mA cm−2
    Capacity density
    (mAh cm−2
    Depth of
    discharge
    Cycle life
    (h)
    Electrolyte
    C@Ag[108]1350%37001 mol L−1 NaSO3CF3 in diglyme with 0.1 mol L−1 NaTFSI
    1233%4000
    Bi$ \subset $CNs[109]1350%14001 mol L−1 NaSO3CF3 in diglyme
    1233.33%2800
    PVDF@Cu[111]1125%12001 mol L−1 NaPF6 in diglyme
    2125%900
    Sn/C@Cu[112]1116.7%40801 mol L−1 NaSO3CF3 in diglyme
    3150%850
    C@Sb@Cu foil[73]1125%24001 mol L−1 NaSO3CF3 in diglyme
    1233.3%1200
    PNF@Cu[113]1250%21001 mol L−1 NaPF6 in diglyme
    2250%900
    PSN@Cu[114]1125%2300
    1250%2500
    PB@Cu[115]1125%2700
    1250%2500
    N- TiNb2O7@Cu[116]1350%24001 mol L−1 NaPF6 in diglyme
    下载: 导出CSV
  • [1] Thirumalraj B, Hagos T T, Huang C J, et al. Nucleation and growth mechanism of lithium metal electroplating[J]. Journal of the American Chemistry Society,2019,141(46):18612-18623. doi: 10.1021/jacs.9b10195
    [2] Liu W Y, Yi C J, Li L P, et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries[J]. Angewandte Chemie International Edition,2021,60(23):12931-12940. doi: 10.1002/anie.202101537
    [3] He K Q, Cheng S H S, Hu J Y, et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition,2021,60(21):12116-12123. doi: 10.1002/anie.202103403
    [4] Zhao J, Liao L, Shi F F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemistry Society,2017,139(33):11550-11558. doi: 10.1021/jacs.7b05251
    [5] Liu S F, Ji X, Yue J, et al. High interfacial-energy interphase promoting safe lithium metal batteries high interfacial-energy interphase promoting safe lithium metal batteries[J]. Journal of the American Chemistry Society,2020,142(5):2438-2447. doi: 10.1021/jacs.9b11750
    [6] Gunnarsdottir A B, Amanchukwu C V, Menkin S, et al. Noninvasive in situ NMR study of "Dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemistry Society,2020,142(49):20814-20827. doi: 10.1021/jacs.0c10258
    [7] Huang Z J, Choudhury S, Gong H X, et al. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium[J]. Journal of the American Chemistry Society,2020,142(51):21393-21403. doi: 10.1021/jacs.0c09649
    [8] Chen X, Bai Y K, Zhao C Z, et al. Lithium bonds in lithium batteries[J]. Angewandte Chemie International Edition,2020,59(28):11192-11195. doi: 10.1002/anie.201915623
    [9] Cheng X Y, Xian F, Hu Z G, et al. Fluorescence probing of active lithium distribution in lithium metal anodes[J]. Angewandte Chemie International Edition,2019,58(18):5936-5940. doi: 10.1002/anie.201900105
    [10] Huang S B, Chen L, Wang T S, et al. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries[J]. Nano Letters,2021,21(1):791-797. doi: 10.1021/acs.nanolett.0c04546
    [11] Zhu M, Wang G, Liu X, et al. Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-Rich protection layer[J]. Angewandte Chemie International Edition,2020,59(16):6596-6600. doi: 10.1002/anie.201916716
    [12] Sun H, Zhu G Z, Xu X T, et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte[J]. Nature Communication,2019,10(1):3302. doi: 10.1038/s41467-019-11102-2
    [13] Cohn A P, Muralidharan N, Carter R, et al. Anode-free sodium battery through in situ plating of sodium metal[J]. Nano Letters,2017,17(2):1296-1301. doi: 10.1021/acs.nanolett.6b05174
    [14] Zhang X, Hao F, Cao Y J, et al. Dendrite‐free and long‐cycling sodium metal batteries enabled by sodium‐ether cointercalated graphite anode[J]. Advanced Functional Materials,2021,31(15):2009778. doi: 10.1002/adfm.202009778
    [15] Xu Y, Wang C L, Matios E, et al. Sodium deposition with a controlled location and orientation for dendrite‐free sodium metal batteries[J]. Advanced Energy Materials,2020,10(44):2002308. doi: 10.1002/aenm.202002308
    [16] Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communication,2013,4:1-7.
    [17] Wang P F, You Y, Yin Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials,2018,8(8):1701912. doi: 10.1002/aenm.201701912
    [18] Wang C Z, Jin H B, Zhao Y J. Surface potential regulation realizing stable sodium/Na3Zr2Si2PO12 interface for room-temperature sodium metal batteries[J]. Small,2021,17(23):2100974. doi: 10.1002/smll.202100974
    [19] Nayak P K, Erickson E M, Schipper F, et al. Review on challenges and recent advances in the electrochemical Performance of high capacity Li- and Mn-Rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials,2018,8(8):1702397. doi: 10.1002/aenm.201702397
    [20] Yang Z, Li G L, Sun J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials,2020,25:724-730. doi: 10.1016/j.ensm.2019.09.014
    [21] Wu C, Kopold P, Ding Y L, et al. Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes[J]. ACS Nano,2015,9:6610-6618. doi: 10.1021/acsnano.5b02787
    [22] Nguyen L H B, Broux T, Camacho P S, et al. Stability in water and electrochemical properties of the Na3V2(PO4)2F3 – Na3(VO)2(PO4)2F solid solution[J]. Energy Storage Materials,2019,20:324-334. doi: 10.1016/j.ensm.2019.04.010
    [23] Yan C X, Zhao A L, Zhong F P, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimical Acta,2020,332:135533. doi: 10.1016/j.electacta.2019.135533
    [24] Qian J F, Wu C, Cao Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials,2018,8(17):1702619. doi: 10.1002/aenm.201702619
    [25] Fan L L, Li X F. Recent advances in effective protection of sodium metal anode[J]. Nano Energy,2018,53:630-642. doi: 10.1016/j.nanoen.2018.09.017
    [26] Matios E, Wang H, Wang C L, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior Eelectrochemical stability[J]. ACS Applied Materials & Interfaces,2019,11(5):5064-5072.
    [27] Xiao F P, Wang H K, Yao T H et al. MOF-derived CoS2/N-doped carbon composite to induce short-chain sulfur molecule generation for enhanced sodium-sulfur battery performance[J]. ACS Applied Materials & Interfaces,2021,13(15):18010-18020.
    [28] Wang J Q, Ni Y X, Liu J X, et al. Room-temperature flexible quasi-solid-state rechargeable Na-O2 batteries[J]. ACS Central Science,2020,6(11):1955-1963. doi: 10.1021/acscentsci.0c00849
    [29] Thoka S, Tong Z Z, Jena A, et al. High-performance Na–CO2 batteries with ZnCo2O4@CNT as the cathode catalyst[J]. Journal of Materials Chemistry A,2020,8(45):23974-23982. doi: 10.1039/D0TA09235E
    [30] Sun Q, Yadegari H, Banis M N, et al. Toward a sodium–“air” battery: Revealing the critical role of humidity[J]. The Journal of Physical Chemistry C,2015,119(24):13433-13441. doi: 10.1021/acs.jpcc.5b02673
    [31] Nichols J E, McCloskey B D. The sudden death phenomena in nonaqueous Na–O2 batteries[J]. The Journal of Physical Chemistry C,2017,121(1):85-96. doi: 10.1021/acs.jpcc.6b09663
    [32] Liu C, Carboni M, Brant W R, et al. On the stability of NaO2 in Na-O2 batteries[J]. ACS Applied Materials & Interfaces,2018,10(16):13534-13541.
    [33] Kang S, Mo Y, Ong S P, et al. Nanoscale stabilization of sodium oxides: Implications for Na-O2 batteries[J]. Nano Letters,2014,14(2):1016-1020. doi: 10.1021/nl404557w
    [34] Jian Z L, Chen Y, Li F J, et al. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode[J]. Journal of Power Sources,2014,251:466-469. doi: 10.1016/j.jpowsour.2013.11.091
    [35] Han S B, Cai C, Yang F, et al. Interrogation of the reaction mechanism in a Na-O2 battery using in situ transmission electron microscopy[J]. ACS Nano,2020,14(3):3669-3677.
    [36] Das S K, Lau S, Archer L A. Sodium–oxygen batteries: A new class of metal–air batteries[J]. Journal of Materials Chemistry A,2014,2(32):12623-12629. doi: 10.1039/C4TA02176B
    [37] Zhou D, Chen Y, Li B H, et al. A stable quasi-solid-state sodium-sulfur battery[J]. Angewandte Chemie International Edition,2018,57(32):10168-10172. doi: 10.1002/anie.201805008
    [38] Ye H L, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the USA,2017,114(50):13091-13096. doi: 10.1073/pnas.1711917114
    [39] Wu J X, Liu J P, Lu Z H, et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery[J]. Energy Storage Materials,2019,23:8-16. doi: 10.1016/j.ensm.2019.05.045
    [40] Wei S Y, Xu S M, Agrawral A, et al. A stable room-temperature sodium-sulfur battery[J]. Nature Communication,2016,7:11722. doi: 10.1038/ncomms11722
    [41] Wang J L, Yang J, Nuli Y, et al. Room temperature Na/S batteries with sulfur composite cathode materials[J]. Electrochemistry Communications,2007,9(1):31-34. doi: 10.1016/j.elecom.2006.08.029
    [42] Wan H L, Weng W, Han F D, et al. Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery[J]. Nano Today,2020,33:100860. doi: 10.1016/j.nantod.2020.100860
    [43] Fan L, Ma R F, Yang Y H, et al. Covalent sulfur for advanced room temperature sodium-sulfur batteries[J]. Nano Energy,2016,28:304-310. doi: 10.1016/j.nanoen.2016.08.056
    [44] Wang X C, Zhang X J, Lu Y, et al. Flexible and tailorable Na−CO2 batteries based on an all-solid-state polymer electrolyte[J]. ChemElectroChem,2018,5(23):3628-3632. doi: 10.1002/celc.201801018
    [45] Tong Z Z, Wang S B, Fang M H, et al. Na–CO2 battery with NASICON-structured solid-state electrolyte[J]. Nano Energy,2021,85:105972.
    [46] Hu X F, Li Z F, Zhao Y R, et al. Quasi–solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes[J]. Science Advances,2017,3:1602396. doi: 10.1126/sciadv.1602396
    [47] Ye H, Wang C Y, Zuo T T, et al. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes[J]. Nano Energy,2018,48:369-376. doi: 10.1016/j.nanoen.2018.03.069
    [48] Cui J Y, Wang A X, Li G J, et al. Composite sodium metal anodes for practical applications[J]. Journal of Materials Chemistry A,2020,8(31):15399-15416. doi: 10.1039/D0TA02469D
    [49] Brutti S, Navarra M A, Maresca G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimical Acta,2019,306:317-326. doi: 10.1016/j.electacta.2019.03.139
    [50] Sarkar A, Manohar C V, Mitra S. A simple approach to minimize the first cycle irreversible loss of sodium titanate anode towards the development of sodium-ion battery[J]. Nano Energy,2020,70:104520. doi: 10.1016/j.nanoen.2020.104520
    [51] Zhao F, Zhou X F, Deng W, et al. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes[J]. Nano Energy,2019,62:55-63. doi: 10.1016/j.nanoen.2019.04.087
    [52] Rakov D A, Chen F F, Ferdousi S A, et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes[J]. Nature Materials,2020,19(10):1096-1101. doi: 10.1038/s41563-020-0673-0
    [53] Hirsh H S, Li Y X, Tan D H S, et al. Sodium‐ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials,2020,10(32):2001274. doi: 10.1002/aenm.202001274
    [54] Guo Y J, Niu Y B, Wei Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery[J]. ACS Applied Materials & Interfaces,2021,13(2):2772-2778.
    [55] Zhu M, Li L L, Zhang Y J, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte[J]. Energy Storage Materials,2021,42:145-153. doi: 10.1016/j.ensm.2021.07.012
    [56] Wang L X, Han W F, Ge C H, et al. Functionalized carboxyl carbon/NaBOB composite as highly conductive electrolyte for sodium ion batteries[J]. Chemistry Select,2018,3(32):9293-9300.
    [57] Leggesse E G, Wei T Y, Nachimuthu S, et al. Theoretical study of the reductive decomposition of vinylethylene sulfite as an additive in lithium ion battery[J]. Journal of the Chinese Chemical Society,2016,63(6):480-487. doi: 10.1002/jccs.201600076
    [58] Matios E, Wang H, Wang C L, et al. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A Review[J]. Industrial & Engineering Chemistry Research,2019,58(23):9758-9780.
    [59] Chen Q W, He H, Hou Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes[J]. Journal of Materials Chemistry A,2020,8(32):16232-16237. doi: 10.1039/D0TA04715E
    [60] Kumar A, Ghosh A, Roy A, et al. High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays[J]. Energy Storage Materials,2019,20:196-202. doi: 10.1016/j.ensm.2018.11.031
    [61] Fan T E, Xie H F. Sb2S3-rGO for high-performance sodium-ion battery anodes on Al and Cu foil current collector[J]. Journal of Alloys and Compounds,2019,775:549-553. doi: 10.1016/j.jallcom.2018.10.103
    [62] Wang T S, Liu Y C, Lu Y X, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials,2018,15:274-281.
    [63] Wang P, Zhang G, Wei X Y, et al. Bioselective synthesis of a porous carbon collector for high-performance sodium-metal anodes[J]. Journal of the American Chemistry Society,2021,143(9):3280-3283. doi: 10.1021/jacs.0c12098
    [64] Wang H, Matios E, Wang C L, et al. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes[J]. Journal of Materials Chemistry A,2019,7(41):23747-23755. doi: 10.1039/C9TA05176G
    [65] Bai M, Liu Y J, Zhang K R, et al. Alloying-triggered heterogeneous nucleation for the flexible sodium metallic batteries[J]. Energy Storage Materials,2021,38:499-508. doi: 10.1016/j.ensm.2021.03.033
    [66] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small,2014,10(17):3480-98. doi: 10.1002/smll.201303202
    [67] Kamiyama A, Kubota K, Nakano T, et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Applied Energy Materials,2019,3(1):135-140.
    [68] Zhang H W, Hu M X, Huang Z H, et al. Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes[J]. Progress in Natural Science:Materials International,2020,30(1):13-19. doi: 10.1016/j.pnsc.2020.01.009
    [69] Zhang H, Guo H N, Li A Y, et al. High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries[J]. Journal of Energy Chemistry,2019,31:159-166. doi: 10.1016/j.jechem.2018.06.002
    [70] Perveen T, Siddiq M, Shahzad N, et al. Prospects in anode materials for sodium ion batteries - A review[J]. Renewable and Sustainable Energy Reviews,2020,119:109549. doi: 10.1016/j.rser.2019.109549
    [71] Guo R Q, Lv C X, Xu W J, et al. Effect of intrinsic defects of carbon materials on the sodium storage performance[J]. Advanced Energy Materials,2020,10(9):1903652. doi: 10.1002/aenm.201903652
    [72] Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Review,2018,47(8):2680-2721. doi: 10.1039/C7CS00787F
    [73] Wang G Y, Zhang Y, Guo B K, et al. Core-shell C@Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes[J]. Nano Letters,2020,20(6):4464-4471. doi: 10.1021/acs.nanolett.0c01257
    [74] Li Z J, Li H, Li M, et al. Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode[J]. Energy Storage Materials,2021,42:118-128. doi: 10.1016/j.ensm.2021.07.027
    [75] Li D S, Wang D Y, Rui K, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources,2018,384:27-33. doi: 10.1016/j.jpowsour.2018.02.069
    [76] Wu S T, Wu H Q, Zou M C, et al. Short-range ordered graphitized-carbon nanotubes with large cavity as high-performance lithium-ion battery anodes[J]. Carbon,2020,158:642-650. doi: 10.1016/j.carbon.2019.11.036
    [77] Park S, Jin H J, Yun Y S. Effects of carbon-based electrode materials for excess sodium metal anode engineered rechargeable sodium batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8(48):17697-17706.
    [78] Yin R L, Guo W Q, Du J S, et al. Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms[J]. Chemical Engineering Journal,2017,317:632-639. doi: 10.1016/j.cej.2017.01.038
    [79] Zhang R Z, Palumbo A, Kim J C, et al. Flexible graphene‐ , graphene‐oxide‐, and carbon‐nanotube‐based supercapacitors and batteries[J]. Annalen der Physik,2019,531(10):1800507. doi: 10.1002/andp.201800507
    [80] Vijaya Kumar Saroja A P, Rajamani A, Muthusamy K, et al. Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery[J]. Advanced Materials Interfaces,2019,6(24):1901497. doi: 10.1002/admi.201901497
    [81] An Y L, Fei H F, Zeng G F, et al. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources,2018,378:66-72. doi: 10.1016/j.jpowsour.2017.12.033
    [82] Yoon H J, Kim N R, Jin H J, et al. Macroporous catalytic carbon nanotemplates for sodium metal anodes[J]. Advanced Energy Materials,2018,8(6):1701261. doi: 10.1002/aenm.201701261
    [83] Wang B Y, Jiang T T, Hou L J, et al. N-doped carbon tubes with sodiophilic sites for dendrite free sodium metal anode[J]. Solid State Ionics,2021,368:115711. doi: 10.1016/j.ssi.2021.115711
    [84] Sun B, Li P, Zhang J Q, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries[J]. Advanced Materials,2018,30:1801334. doi: 10.1002/adma.201801334
    [85] Ye L, Liao M, Zhao T C, et al. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries[J]. Angewandte Chemie International Edition,2019,58(47):17054-17060. doi: 10.1002/anie.201910202
    [86] Zheng X Y, Li P, Cao Z, et al. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers[J]. Small,2019,15(41):1902688. doi: 10.1002/smll.201902688
    [87] Mohanta J, Kim H J, Jeong S M, et al. High-performance quasi-solid-state flexible sodium metal battery: Substrate-free FeS2–C composite fibers cathode and polyimide film-stuck sodium metal anode[J]. Chemical Engineering Journal,2020,391:123510. doi: 10.1016/j.cej.2019.123510
    [88] Zhang Y, Wang C W, Pastel G, et al. 3D wettable framework for dendrite‐free alkali metal anodes[J]. Advanced Energy Materials,2018,8(18):1800635. doi: 10.1002/aenm.201800635
    [89] Zheng Z J, Zeng X X, Ye H, et al. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes[J]. ACS Applied Materials & Interfaces,2018,10(36):30417-30425.
    [90] Wang H, Wang C L, Matios E, et al. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes[J]. Nano Letters,2017,17(11):6808-6815. doi: 10.1021/acs.nanolett.7b03071
    [91] Wang S Y, Liu Y, Lu K, et al. Engineering rGO/MXene hybrid film as an anode host for stable sodium-metal batteries[J]. Energy & Fuels,2021,35(5):4587-4595.
    [92] Fang Y Y, Xu X, Du Y C, et al. Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improved sodium storage performance[J]. Journal of Materials Chemistry A,2018,6(24):11244-11251. doi: 10.1039/C8TA02945H
    [93] Wang A X, Hu X F, Tang H Q, et al. Processable and moldable sodium-metal anodes[J]. Angewandte Chemie International Edition,2017,56(39):11921-11926. doi: 10.1002/anie.201703937
    [94] Jin X, Zhao Y, Shen Z H, et al. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode[J]. Energy Storage Materials,2020,31:221-229. doi: 10.1016/j.ensm.2020.06.040
    [95] Wu F, Zhou J H, Luo R, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode[J]. Energy Storage Materials,2019,22:376-383. doi: 10.1016/j.ensm.2019.02.015
    [96] Chen L, Yan R Y, Oschatz M, et al. Ultrathin 2D graphitic carbon nitride on metal films: Underpotential sodium deposition in adlayers for sodium-ion batteries[J]. Angewandte Chemie International Edition,2020,59(23):9067-9073. doi: 10.1002/anie.202000314
    [97] Wen Y, He K, Zhu Y J, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications,2014,5:1-10.
    [98] Zhang X, Hao F, Cao Y J, et al. Dendrite‐free and long‐cycling sodium metal batteries enabled by sodium‐ether cointercalated graphite anode[J]. Advanced Functional Materials,2021,31(15):1-8.
    [99] Chang H J, Canfield N L, Jung K, et al. Advanced Na-NiCl2 battery using nickel-coated graphite with core-shell microarchitecture[J]. ACS Applied Materials & Interfaces,2017,9(13):11609-11614.
    [100] Go W, Kim M H, Park J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes[J]. Nano Letters,2019,19(3):1504-1511. doi: 10.1021/acs.nanolett.8b04106
    [101] Ye S F, Liu F F, Xu R, et al. RuO2 particles anchored on brush-like 3D carbon cloth guide homogenous Li/Na nucleation framework for stable Li/Na anode[J]. Small,2019,15(46):1903725. doi: 10.1002/smll.201903725
    [102] Yue X Y, Li X L, Wang W W, et al. Wettable carbon felt framework for high loading Li-metal composite anode[J]. Nano Energy,2019,60:257-266. doi: 10.1016/j.nanoen.2019.03.057
    [103] Sun D, Zhu X B, Luo B, et al. New binder‐free metal phosphide–carbon felt Ccomposite anodes for sodium‐ion battery[J]. Advanced Energy Materials,2018,8(26):1801197. doi: 10.1002/aenm.201801197
    [104] Chi S S, Qi X G, Hu Y S, et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials,2018,8(15):1702764. doi: 10.1002/aenm.201702764
    [105] Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode[J]. Nano Letters,2017,17(6):3792-3797. doi: 10.1021/acs.nanolett.7b01138
    [106] Li T J, Sun J C, Gao S Z, et al. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure[J]. Advanced Energy Materials,2020,11(7):2003699.
    [107] Xie Y Y, Han Z X, Li H X, et al. Uniform nucleation of sodium/lithium in holey carbon nanosheet for stable Na/Li metal anodes[J]. Chemical Engineering Journal,2022,427:130959. doi: 10.1016/j.cej.2021.130959
    [108] Zhu N H, Mao X G, Wang G Y, et al. Stable sodium metal anodes with a high utilization enabled by an interfacial layer composed of yolk–shell nanoparticles[J]. Journal of Materials Chemistry A,2021,9(22):13200-13208. doi: 10.1039/D1TA01800K
    [109] Zhang L, Zhu X L, Wang G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small,2021,17(12):2007578. doi: 10.1002/smll.202007578
    [110] Xie Y Y, Hu J X, Han Z X, et al. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries[J]. Energy Storage Materials,2020,30:1-8. doi: 10.1016/j.ensm.2020.05.008
    [111] Hou Z, Wang W H, Yu Y K, et al. Poly(vinylidene difluoride) coating on Cu current collector for high-performance Na metal anode[J]. Energy Storage Materials,2020,24:588-593. doi: 10.1016/j.ensm.2019.06.026
    [112] Wang G Y, Yu F F, Zhang Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy,2021:79.
    [113] Hou Z, Wang W H, Chen Q W, et al. Hybrid protective layer for stable sodium metal anodes at high utilization [J]. ACS Applied Materials & Interfaces, 2019, 11 (41): 37693-37700.
    [114] Chen Q W, Hou Z, Sun Z Z, et al. Polymer–inorganic composite protective layer for stable Na metal anodes[J]. ACS Applied Energy Materials,2020,3(3):2900-2906. doi: 10.1021/acsaem.9b02508
    [115] Zhang J L, Wang S, Wang W H, et al. Stabilizing sodium metal anode through facile construction of organic-metal interface[J]. Journal of Energy Chemistry,2022,66:133-139. doi: 10.1016/j.jechem.2021.07.022
    [116] Huang Z Y, Li Z, Zhu M, et al. Highly stable lithium/sodium metal batteries with high utilization enabled by a holey two-dimensional N-doped TiNb2O7 host[J]. Nano Letters,2021,24:10453-10461.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1816
  • HTML全文浏览量:  913
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2021-12-27
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回