张馨壬, 杨佳迎, 任增英, 谢科予, 叶谦, 徐飞, 刘兴蕊. 原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程[J]. 新型炭材料, 2022, 37(2): 371-380. DOI: 10.1016/S1872-5805(22)60601-2
引用本文: 张馨壬, 杨佳迎, 任增英, 谢科予, 叶谦, 徐飞, 刘兴蕊. 原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程[J]. 新型炭材料, 2022, 37(2): 371-380. DOI: 10.1016/S1872-5805(22)60601-2
ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy[J]. New Carbon Mater., 2022, 37(2): 371-380. DOI: 10.1016/S1872-5805(22)60601-2
Citation: ZHANG Xin-ren, YANG Jia-ying, REN Zeng-ying, XIE Ke-yu, YE Qian, XU Fei, LIU Xing-rui. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy[J]. New Carbon Mater., 2022, 37(2): 371-380. DOI: 10.1016/S1872-5805(22)60601-2

原位AFM探索钠离子电池溶剂依赖型石墨界面演绎过程

In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy

  • 摘要: 石墨在碳酸酯基电解液中储钠活性很低,因此被认为不合适作为钠离子电池负极材料。而最近的研究表明,在以线性醚为溶剂的钠离子电解液中,石墨具有高的储钠容量和首圈库伦效率。因此,探索这种溶剂依赖型的石墨界面演绎过程具有重要的意义。本研究采用原位原子力显微镜(Atomic force microscopy,AFM)实时观测石墨在碳酸酯基和线性醚基电解液下的界面微观动态过程。结果表明:在线性醚溶剂下,石墨电极界面没有固体电解质界面膜(Solid electrolyte interphase,SEI)形成,且溶剂化钠离子可以在石墨层间进行可逆的插入和脱出,AFM结果从界面角度解释了其具有高初始库伦效率的内在原因。然而在碳酸酯溶剂中,可以观察到石墨电极表面出现明显的沉积物,对应SEI的生长;并且在充电过程中SEI逐渐减少,表明碳酸酯溶剂下形成的SEI不稳定,造成不可逆的容量损失和低库伦效率。此外,石墨表面未出现明显的台阶变化,反映了没有钠离子的脱嵌过程。上述研究结果为石墨负极界面反应动态过程提供了见解,从微观尺度揭示了溶剂依赖的石墨负极储钠行为及其界面反应机理,为高性能钠离子电池体系的设计与发展提供了理论依据。

     

    Abstract: Graphite has proved to be inactive for Na+ storage in ester-based electrolytes when used as the anode material. Recent studies have shown the feasibility of a graphite anode for Na+ storage with a large capacity and a high initial Coulombic efficiency (ICE) in linear ether-based electrolytes. Understanding such solvent-dependent electrochemical behavior at the nanometer scale is essential but has remained elusive, especially the direct visualization of the graphite/electrolyte interface. We report the in-situ observation by atomic force microscopy of a working battery that allowed us to monitor and visualize the changes of the graphite/electrolyte interface in both linear ether and ester-based electrolytes. Results indicate that there is no solid electrolyte interphase (SEI) formation in the linear ether-based electrolytes and the co-intercalation is reversible and stable in the following cycles, which are responsible for the relatively high ICE, large capacity and excellent stability. In the ester-based electrolytes, SEI deposition is obvious during the sodiation process, but not in the desodiation process, leading to a serious consumption of the electrolyte, and thus a low ICE and irreversible Na+ storage. Our findings provide insights into the dynamics of changes in the graphite/electrolyte interface and reveal the solvent-dependent Na+ storage at the nanometer scale, paving the way to develop high-performance Na+ batteries.

     

/

返回文章
返回