留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress on carbonene-based materials for Zn-ion hybrid supercapacitors

ZHOU Yi-jing LUO Jin-rong SHAO Yan-yan XIA Zhou SHAO Yuan-long

周伊静, 罗金荣, 邵妍妍, 夏洲, 邵元龙. 烯碳材料用于锌离子混合电容器的研究进展. 新型炭材料(中英文), 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5
引用本文: 周伊静, 罗金荣, 邵妍妍, 夏洲, 邵元龙. 烯碳材料用于锌离子混合电容器的研究进展. 新型炭材料(中英文), 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5
ZHOU Yi-jing, LUO Jin-rong, SHAO Yan-yan, XIA Zhou, SHAO Yuan-long. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New Carbon Mater., 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5
Citation: ZHOU Yi-jing, LUO Jin-rong, SHAO Yan-yan, XIA Zhou, SHAO Yuan-long. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New Carbon Mater., 2022, 37(5): 918-935. doi: 10.1016/S1872-5805(22)60642-5

烯碳材料用于锌离子混合电容器的研究进展

doi: 10.1016/S1872-5805(22)60642-5
基金项目: 国家自然科学基金项目(52003188),国家自然科学基金基础科学中心项目(T2188101),江苏省自然科学基金项目(BK20200871),江苏省创新创业人才计划(JSSCRC2021529),姑苏青年领军人才(ZXL2021449),苏州市重点产业技术创新项目(SYG202108)
详细信息
    通讯作者:

    邵元龙,研究员. E-mail:shaoyuanlong@pku.edu.cn

  • 中图分类号: TQ127.1+1

Progress on carbonene-based materials for Zn-ion hybrid supercapacitors

Funds: This project was financially supported by National Natural Science Foundation of China (52003188 (Y.S.)), Natural Science Foundation of Jiangsu Province (BK20200871 (Y.S.)), Jiangsu innovation and entrepreneurship talent program (JSSCRC2021529), Gusu's young leading talent (ZXL2021449), Key industry technology innovation project of Suzhou (SYG202108)
More Information
    Author Bio:

    周伊静、罗金荣为共同第一作者

    Corresponding author: SHAO Yuan-long,Professor. E-mail: shaoyuanlong@pku.edu.cn
  • 摘要: 随着可穿戴电子设备的出现,诸如锌离子混合电容器等绿色储能器件,因其具有安全性高、稳定性好、成本低、功率密度高、能量密度大的特点,从而受到了广泛的关注。对于锌离子混合电容器,烯碳材料(主要包括石墨烯和碳纳米管)由于其卓越的导电性和良好的机械稳定性,被认为是一种十分有前景的材料。在此,作者对用于锌离子混合电容器的烯碳基材料的改性策略进行了全面的综述,并对锌离子混合电容器的储能机理、锌阳极和电解液进行了简要总结。最后,还对锌离子混合电容器的未来研究方向进行了展望。
  • FIG. 1816.  FIG. 1816.

    FIG. 1816..  FIG. 1816.

    Figure  1.  Common carbon-based cathode materials, including PC-based materials[23], HCS-based materials[26], graphene-based materials[31, 32] and CNT-based materials[29]. And varied strategies for designing high-performance ZHSCs, including porosity engineering, structure design, heteroatom doping and introduction conductive additives.

    Figure  2.  (a) Diagrams of fabrication process of ZmSCs. (b) Morphology of untreated CNTs paper[14]. (c) Synthesis process of N-CNT@CNT fiber electrode. (d) SEM image of original CNTs fiber[29]. (Reprinted with permission)

    Figure  3.  (a) Morphology of ZFO powders. (b) Morphology of AC/MWNTs/ZFO compounds. (c) The cyclic voltammetry curves of ZFO, MWNTs, AC and AC/MWNTs/ZFO compounds in 3 mol L−1 KOH electrolyte[46]. (d) Synthesis process of DV2C@CNT film with laminated structure. (e) Cycling stability of DV2C@CNT self-supporting electrode under 0.5 A·g−1[30]. (Reprinted with permission)

    Figure  4.  (a) Preparation procedure of rGO/CNT and graphite fibers@Zn and the diagrams of fabrication process of assembling fiber-shaped ZHSCs and its working mechanism. (b) CV curves of the fiber-shaped ZHSCs-PAA when bent at different angles. (c) Comparison of thus-prepared fiber-shaped ZHSCs with recently reported various fiber-shaped capacitors[28]. MWNTs-rGO fibers’ SEM images in (d) winded and (e) knotted mode. (f) Digital photograph of the fiber-shaped ZHSCs under bending state[47]. (g) Normalized capacitance as a function of stretch times, inset is CV curves of capacitor with CNT−rGO@F electrode after stretching and releasing for several times. (h) Comparison of the conductivity variation between rGO@F and CNT−rGO@F during one period of exerting 50% strain and releasing. (i) Digital image of the CNT−rGO@F compound[48]. (Reprinted with permission)

    Figure  5.  (a) The cross-sectional morphology of GH films with varied treatment time. (b) Cycling performance of the ZHSCs. (c) Optical photograph and SEM image of GH films[61]. (d) The reasons for PQ-GH material with excellent performances[27]. (e) Preparation diagrams of NHG-GO films from GO and NHG dispersions[64]. (Reprinted with permission)

    Figure  6.  (a) SEM image of 3D graphene hydrogel. (b) Cycling performance at the current density of 10 A·g−1. (c) Display diagrams of two devices in series lighting pattern “LZ”[67]. (d) Preparation flowchart of 3DVAG. (e) Microscopic morphology of graphene gel obtained from hydrothermal. (f) Comparison of rate performance with 3DrGO[68]. (Reprinted with permission)

    Figure  7.  (a) The illustration for preparation of NPG nano-compounds. (b) Morphology of NPG-0.75 power. (c) The long-term cycling lifespan at current density of 5 A·g−1 (inset is corresponding GCD curves)[75]. (d) LED bulb and the timing device in parallel were lighted by independent ZHSCs[31]. (e) Diagrams of working mechanism of ZHSCs, stressing the importances of oxygen-containing groups in elevating pseudocapacitance. (f) Rate capability of rGO films obtained from various treatments. (g) The CV curve of quasi-solid-state ZHSCs measured at different bending angles (ranging from 0° to 90°)[76]. (Reprinted with permission)

    Figure  8.  (a) Preparation of MXene-rGO aerogels. (b) Mechanical properties of MXene-rGO aerogel. (c) Elemental analysis images of MXene-rGO aerogel[77]. (d) and (e) SEM images of PPy/EGO-1200 s powders. (f) Comparison of rate performance of PPy/EGO under varied deposition conditions[79]. (Reprinted with permission)

    Table  1.   Electrochemical performance summary of CNT-based materials for ZHSCs.

    CathodeAnodeElectrolytePotential (V)Specific capacityEnergy densityPower densityCycle performanceRef.
    CNTsZn1 M ZnSO40-1.820 mF·cm−2
    (10 mV·s−1)
    //~100% 5000 cycles
    (500 mV·s−1)
    [44]
    CNTRecoverable Zn1 M ZnSO40.2-1.883.2 mF·cm−2
    (1 mA·cm− 2)
    29.6 μWh·cm−28 mW·cm−287.4% 6000 cycles
    (5 mA·cm−2)
    [14]
    N-CNT @CNTZn@CNT fiber3 M Zn(CF3SO3)2/
    PVA gel
    0-1.811.52 mF·cm−2
    ( 0.71 mA·cm−2)
    5.18 mW·h cm−23.23 mW·cm−288.56% 10000 cycles
    (1.42 mA·cm−2)
    [29]
    V2C MXene @CNTZn foil1 M ZnSO40.1-1.1190.2 F·g−1
    (0.5 A·g−1)
    ///[30]
    rGO/CNTZn-coated
    graphite
    ZnSO4-filled PAA
    hydrogel
    0-1.876.7 F·cm−3, at
    (8000 mA·cm−3)
    48.5 mWh·cm−3179.9 mW·cm−398.5% 10000 cycles
    (3200 mA·cm−3)
    [28]
    MWCNTs-rGOMWCNTs-rGO-ZnZn(CF3SO3)2 /
    PVA gel
    0-1.841.2 F·cm−3
    (1 mV·s−1)
    13.1 mWh·cm−31433.2 mW·cm−3~100% 4000 cycles
    (1.5924 A·cm−3)
    [47]
    Activated carbonZn@CNTS2 M Zn(CF3SO3)20.2-1.877 mAh·g−1
    (0.1 A·g−1)
    //~100% 7000 cycles
    (2 A·g−1)
    [49]
    3DP MXeneZn@3DP CNT2 M ZnSO40.1-1.2184.4 F·g−1
    (10 A·g−1)
    0.10 mWh·cm−25.90 mW·cm−286.5% 6000 cycles
    (10 mA·cm−2)
    [50]
    Note: M: mol L−1
    下载: 导出CSV

    Table  2.   Electrochemical performance summary of graphene-based materials for ZHSCs.

    CathodeAnodeElectrolytePotential (V)Specific capacityEnergy densityPower densityCycle performanceRef.
    aMEGOZn3 M Zn(CF3SO3)20-1.9/106.3 Wh·kg−131.4 kW·kg−193% 80000 cycles
    (8 A·g−1)
    [15]
    GOZn2 M ZnSO40.2-1.860 mAh·g−1
    (10 A·g−1)
    52.2 Wh·kg−13602 W·kg−1~90% 10000 cycles
    (15 A·g−1)
    [61]
    rGO@PPDZn foil1 M Zn(Ac)20.2-1.83.012 F·cm−2
    (1 mA·cm−2)
    1.1 mWh·cm−20.8 mW·cm−2~100% 4000 cycles
    (7 mA·cm− 2)
    [62]
    N-rGO/PPyZn2 M ZnSO40-1.6145.32 mAh·g−1
    (0.1 A·g−1)
    232.50 Wh·kg−1160 W·kg−185% 10000 cycles
    (7.0 A·g−1)
    [63]
    PQ-FGHZn foil1 M ZnSO40.2-1.8/32.6 mW·cm−21.31 mWh·cm−2/[27]
    NHG-rGOZn foil2 M ZnCl20.2-1.7235.4 μF·cm−3
    (0.1 A·g−1)
    73.6 Wh·kg−175.2 W·kg−193.9% 100000
    cycles (5 A·g−1)
    [64]
    DGHZn foil1 m ZnSO40.2-1.8222.03 F·g−1
    (0.5 A·g−1)
    118.42 Wh·L−124.00 kW·L−180% 30000
    cycles (10 A·g−1)
    [67]
    3DVAGZn flake2 M ZnSO40.2-1.744.4 F·g−1
    (0.3 A·g−1)
    17.03 Wh·kg−1249.3 W·kg194.6% 3000
    cycles (2 A·g1)
    [68]
    PDA@3DVAGActivated carbon18 M ZnCl4 +
    6 M NH4Cl
    -0.8-0.8133.9 F·g1
    (0.5 A·g−1)
    46.14 Wh·kg−12183 W·kg−161.8% 3000
    cycles (1 A·g1)
    [32]
    NPGZinc foil1 M ZnSO40-1.8210.2 F·g−1
    (0.5 A·g−1)
    94.6 Wh·kg−14500 W·kg−182% 15000
    cycles (10 A·g1)
    [75]
    N/P-doped rGOZn foil1 M Zn(Ac)2 and
    20 M KAc hydrogel
    0-2.0/106.5 Wh·kg−1383.3 W·kg−186.6% 8000
    cycles (5 A·g1)
    [31]
    HHT-rGOZn1 M ZnSO40.2-1.6159 F·g−1
    (100 mV·s−1)
    342 μWh·cm−2880 mW·cm−297.8% 20000
    cycles (2.5 A·g1)
    [76]
    MXene-rGO aerogelZn foil2 M ZnSO40.2-1.6128.6 F·g−1
    (0.4 A·g−1)
    34.9 Wh·kg−1279.9 W·kg−195% 75000
    cycles (5 A·g1)
    [77]
    Porous carbonZn@CoNiP/rGO2 M ZnSO40.2-1.9356.6 F·g−1
    (0.5 A·g−1)
    143.14 Wh·kg−1425 W·kg−192.2% 10000
    cycles (7.5 A·g1)
    [78]
    PPy/EGOZn foil1 M ZnCl20.5-1.5633.0 mF·cm−2
    (0.5 mA·cm−2)
    117.7 Wh·kg−112.4 kW·kg−181% 5000 cycles
    (5 mA·cm−2)
    [79]
    Note: M: mol L−1
    下载: 导出CSV
  • [1] Gao J, Shang K, Ding Y, et al. Material and configuration design strategies towards flexible and wearable power supply devices: a review[J]. Journal of Materials Chemistry A,2021,9(14):8950-8965. doi: 10.1039/D0TA11260G
    [2] Huang Q, Wang D, Zheng Z. Textile-based electrochemical energy etorage devices[J]. Advanced Energy Materials,2016,6(22):1600783. doi: 10.1002/aenm.201600783
    [3] Jayathilaka W, Qi K, Qin Y, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors[J]. Advanced Materials,2019,31(7):e1805921. doi: 10.1002/adma.201805921
    [4] Sumboja A, Liu J, Zheng W G, et al. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design[J]. Chemical Society Reviews,2018,47(15):5919-5945. doi: 10.1039/C8CS00237A
    [5] Shao Y, Shen F, Shao Y. Recent advances in aqueous zinc‐ion hybrid capacitors: a minireview[J]. ChemElectroChem,2020,8(3):484-491.
    [6] Gao M, Wang P, Jiang L, et al. Power generation for wearable systems[J]. Energy & Environmental Science,2021,14(4):2114-2157.
    [7] Li, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics[J]. Small,2018,14(43):e1702829. doi: 10.1002/smll.201702829
    [8] Yi F, Ren H, Shan J, et al. Wearable energy sources based on 2D materials[J]. Chemical Society Reviews,2018,47(9):3152-3188. doi: 10.1039/C7CS00849J
    [9] Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule,2020,4(4):771-799. doi: 10.1016/j.joule.2020.03.002
    [10] Xu C, Li B, Du H, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition,2012,51(4):933-935. doi: 10.1002/anie.201106307
    [11] Dong L, Ma X, Li Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials,2018,13:96-102. doi: 10.1016/j.ensm.2018.01.003
    [12] Li J, Zhang J, Yu L, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors[J]. Energy Storage Materials,2021,42:705-714. doi: 10.1016/j.ensm.2021.08.018
    [13] Guo Q, Liu J, Bai C, et al. 2D silicene nanosheets for high-performance zinc-ion hybrid capacitor application[J]. ACS Nano,2021,15(10):16533-16541. doi: 10.1021/acsnano.1c06104
    [14] Sun G, Yang H, Zhang G, et al. A capacity recoverable zinc-ion micro-supercapacitor[J]. Energy & Environmental Science,2018,11(12):3367-3374.
    [15] Wu S, Chen Y, Jiao T, et al. An aqueous Zn‐ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles[J]. Advanced Energy Materials,2019,9(47):1902915. doi: 10.1002/aenm.201902915
    [16] Yin J, Zhang W, Wang W, et al. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes[J]. Advanced Energy Materials,2020,10(37):2001705. doi: 10.1002/aenm.202001705
    [17] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [18] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [19] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [20] Ratajczak P, Suss M E, Kaasik F, et al. Carbon electrodes for capacitive technologies[J]. Energy Storage Materials,2019,16:126-145. doi: 10.1016/j.ensm.2018.04.031
    [21] Huang L, Xiang Y, Luo M, et al. Hierarchically porous carbon with heteroatom doping for the application of Zn-ion capacitors[J]. Carbon,2021,185:1-8. doi: 10.1016/j.carbon.2021.09.019
    [22] Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy,2019,66:104132. doi: 10.1016/j.nanoen.2019.104132
    [23] Zhang H, Liu Q, Fang Y, et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption[J]. Advanced Materials,2019,31(44):e1904948. doi: 10.1002/adma.201904948
    [24] Zhang X, Zhang Y, Qian J, et al. Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor[J]. Nanoscale,2022,14(5):2004-2012. doi: 10.1039/D1NR07818F
    [25] Chen S, Ma L, Zhang K, et al. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres[J]. Journal of Materials Chemistry A,2019,7(13):7784-7790. doi: 10.1039/C9TA00733D
    [26] Liu P, Liu W, Huang Y, et al. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage[J]. Energy Storage Materials,2020,25:858-865. doi: 10.1016/j.ensm.2019.09.004
    [27] Jiang H, Yuan D, Huang D, et al. Towards high rate and high areal capacity Zn ion hybrid supercapacitor: Fluffy graphene architecture anchored with ultrathin redox-active molecule[J]. Applied Surface Science,2022,585:152695. doi: 10.1016/j.apsusc.2022.152695
    [28] Zhang X, Pei Z, Wang C, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small,2019,15(47):e1903817. doi: 10.1002/smll.201903817
    [29] Pu J, Cao Q, Gao Y, et al. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility[J]. Journal of Materials Chemistry A,2021,9(32):17292-17299. doi: 10.1039/D1TA05617D
    [30] Wang C, Wei S, Chen S, et al. Delaminating vanadium carbides for zinc‐ion storage: hydrate precipitation and H+/Zn2+ co‐action mechanism[J]. Small Methods,2019,3(12):1900495. doi: 10.1002/smtd.201900495
    [31] Deng Y, Wang H, Zhang K, et al. Flexible quasi‐solid‐state high‐performance aqueous zinc ion hybrid supercapacitor with water‐in‐salt hydrogel electrolyte and N/P‐dual doped graphene hydrogel electrodes[J]. Advanced Sustainable Systems,2021,6(1):2100191.
    [32] Cui R, Zhang Z, Zhang H, et al. Aqueous organic Zinc-ion hybrid supercapacitors prepared by 3D vertically aligned graphene-polydopamine composite electrode [J]. Nanomaterials (Basel), 2022, 12(3):DOI: 10.3390/nano12030386.
    [33] Zheng Y, Zhao W, Jia D, et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material[J]. Chemical Engineering Journal,2020,387:124161
    [34] Yu P, Zeng Y, Zeng Y, et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture[J]. Electrochimica Acta,2019,327:134999. doi: 10.1016/j.electacta.2019.134999
    [35] Deng X, Li J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
    [36] Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon[J]. Energy Storage Materials,2020,28:307-314. doi: 10.1016/j.ensm.2020.01.028
    [37] He W, Cheng H, Qu L. Progress on carbonene fibers for energy devices[J]. Acta Physico-Chimica Sinica,2022,38:2203004. doi: 10.3866/PKU.WHXB202203004
    [38] Chen T, Dai L. Carbon nanomaterials for high-performance supercapacitors[J]. Materials Today,2013,16(7-8):272-280. doi: 10.1016/j.mattod.2013.07.002
    [39] Sumio l. Helical microtubules of graphitic carbon[J]. Nature,1991,354(7):56-58.
    [40] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications[J]. Science,2002,297(5582):787-792. doi: 10.1126/science.1060928
    [41] Martin C, Jing M, Bin C, et al. Pore structure of raw and purified HiPco single-walled carbon nanotubes[J]. Chemical Physics Letters,2002,365:69-74. doi: 10.1016/S0009-2614(02)01420-3
    [42] Niu C, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters,1997,70(11):1480-1482. doi: 10.1063/1.118568
    [43] Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small,2012,8(8):1130-1166. doi: 10.1002/smll.201101594
    [44] Tian Y, Amal R, Wang D W. An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes[J]. Frontiers in Energy Research,2016,4:34.
    [45] Wang S, Wang Q, Zeng W, et al. A new free-standing aqueous zinc-ion capacitor based on MnO2-CNTs cathode and MXene anode[J]. Nano-Micro Letters,2019,11(1):70. doi: 10.1007/s40820-019-0301-1
    [46] Mandal M, Subudhi S, Alam I, et al. Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications[J]. Inorganic Chemistry Communications,2021,123:108332. doi: 10.1016/j.inoche.2020.108332
    [47] Ni T, Wang S, Shi J, et al. Highly flexible and self‐healable zinc‐ion hybrid supercapacitors based on MWCNTs‐RGO fibers[J]. Advanced Materials Technologies,2020:2000268. doi: 10.1002/admt.202000268
    [48] Kang S H, Lee G Y, Lim J, et al. CNT-rGO hydrogel-integrated fabric composite synthesized via an interfacial gelation process for wearable supercapacitor electrodes[J]. ACS Omega,2021,6(30):19578-19585. doi: 10.1021/acsomega.1c02091
    [49] Dong L, Yang W, Yang W, et al. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors[J]. Chemical Engineering Journal,2020,384:123355. doi: 10.1016/j.cej.2019.123355
    [50] Fan Z, Jin J, Li C, et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano,2021,15(2):3098-3107. doi: 10.1021/acsnano.0c09646
    [51] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:183-191. doi: 10.1038/nmat1849
    [52] Stoller M D, Sungjin P, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [53] Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials,2010,22(35):3906-3924. doi: 10.1002/adma.201001068
    [54] El-Kady M F, Shao Y, Kaner R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials,2016,1(7):16033. doi: 10.1038/natrevmats.2016.33
    [55] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9-10):351-355. doi: 10.1016/j.ssc.2008.02.024
    [56] Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett,2008,100(1):016602. doi: 10.1103/PhysRevLett.100.016602
    [57] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [58] Shao Y, El-Kady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews,2015,44(11):3639-3665. doi: 10.1039/C4CS00316K
    [59] Li S, Li Y, Shao Y, et al. Emerging two-dimensional materials constructed nanofluidic fiber: properties, preparation and applications[J]. Advanced Fiber Materials,2021,4(2):129-144.
    [60] Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials,2012,24(30):4144-4150. doi: 10.1002/adma.201200197
    [61] Zhu Y, Ye X, Jiang H, et al. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes[J]. Journal of Power Sources,2020,453:227851. doi: 10.1016/j.jpowsour.2020.227851
    [62] Xu Y, Chen X, Huang C, et al. Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor[J]. Journal of Power Sources,2021,488:229426. doi: 10.1016/j.jpowsour.2020.229426
    [63] Pattananuwat P, Pornprasertsuk R, Qin J, et al. Polypyrrole nanoparticles embedded nitrogen-doped graphene composites as novel cathode for long life cycles and high-power zinc-ion hybrid supercapacitors[J]. RSC Advances,2021,11(56):35205-35214. doi: 10.1039/D1RA05503H
    [64] Luo J, Xu L, Liu H, et al. Harmonizing graphene laminate spacing and zinc‐ion solvated structure toward efficient compact capacitive charge storage[J]. Advanced Functional Materials,2022:2112151.
    [65] Shao Y, El-Kady M F, Lin C W, et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors[J]. Advanced Materials,2016,28(31):6719-6726. doi: 10.1002/adma.201506157
    [66] Shao Y, Li J, Li Y, et al. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films[J]. Materials Horizons,2017,4(6):1145-1150. doi: 10.1039/C7MH00441A
    [67] Zhang L, Wu D, Wang G, et al. An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density[J]. Chinese Chemical Letters,2021,32(2):926-931. doi: 10.1016/j.cclet.2020.06.037
    [68] Xia P, Zhang Z, Tang Z, et al. Preparation and electrochemical performance of three-dimensional vertically aligned graphene by unidirectional freezing method [J]. Molecules, 2022, 27(2):DOI: 10.3390/molecules27020376.
    [69] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):e1901261. doi: 10.1002/adma.201901261
    [70] Lv Q, Hao H, Ge M, et al. S-doped graphene/mixed-valent manganese oxides composite electrode with superior performance for supercapacitors[J]. Journal of Alloys and Compounds,2020,819:152970. doi: 10.1016/j.jallcom.2019.152970
    [71] Tarimo D J, Oyedotun K O, Mirghni A A, et al. High energy and excellent stability asymmetric supercapacitor derived from sulphur-reduced graphene oxide/manganese dioxide composite and activated carbon from peanut shell[J]. Electrochimica Acta,2020,353:136498. doi: 10.1016/j.electacta.2020.136498
    [72] Zou X, Zhou Y, Wang Z, et al. Free-standing, layered graphene monoliths for long-life supercapacitor[J]. Chemical Engineering Journal,2018,350:386-394. doi: 10.1016/j.cej.2018.05.136
    [73] Fan X, Xu H, Zuo S, et al. Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel[J]. Electrochimica Acta,2020,330:135207. doi: 10.1016/j.electacta.2019.135207
    [74] Xia K, Huang Z, Zheng L, et al. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors[J]. Journal of Power Sources,2017,365:380-388. doi: 10.1016/j.jpowsour.2017.09.008
    [75] Zhao Y, Hao H, Song T, et al. High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode[J]. Journal of Power Sources,2022,521:230941. doi: 10.1016/j.jpowsour.2021.230941
    [76] Shao Y, Sun Z, Tian Z, et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn‐ion hybrid capacitor[J]. Advanced Functional Materials,2020,31(6):2007843.
    [77] Wang Q, Wang S, Guo X, et al. MXene‐reduced graphene oxide aerogel for aqueous zinc‐ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537
    [78] Guo D, Li Z, Wang D, et al. Design and synthesis of zinc-activated CoxNi2-xP/graphene anode for high-performance zinc ion storage device[J]. ChemSusChem,2021,14(10):2205-2215. doi: 10.1002/cssc.202100285
    [79] Yang J, Cao J, Peng Y, et al. Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors[J]. Journal of Power Sources,2021,516:230663. doi: 10.1016/j.jpowsour.2021.230663
    [80] Chen S, Yang G, Zhao X, et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous Zinc-ion hybrid supercapacitor[J]. Frontiers in Chemistry,2020,8:663. doi: 10.3389/fchem.2020.00663
    [81] Wang D, Wang S, Lu Z. S‐doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc‐ion hybrid supercapacitor applications[J]. International Journal of Energy Research,2020,45(2):2498-2510.
    [82] Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials,2018,13:1-7. doi: 10.1016/j.ensm.2017.12.022
    [83] Zhang P, Li Y, Wang G, et al. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Advanced Materials,2019,31(3):e1806005. doi: 10.1002/adma.201806005
    [84] Wang C, Pei Z, Meng Q, et al. Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes[J]. Angewandte Chemie International Edition,2021,60(2):990-997. doi: 10.1002/anie.202012030
    [85] Liu P, Gao Y, Tan Y, et al. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors[J]. Nano Research,2019,12(11):2835-2841. doi: 10.1007/s12274-019-2521-6
    [86] Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society,2016,138(39):12894-12901. doi: 10.1021/jacs.6b05958
    [87] Hao J, Long J, Li B, et al. Toward high‐performance hybrid Zn‐based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Advanced Functional Materials,2019,29(34):1903605. doi: 10.1002/adfm.201903605
    [88] Sun K E, Hoang T K, Doan T N, et al. Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries[J]. ACS Applied Materials & Interfaces,2017,9(11):9681-9687.
    [89] Zhang Q, Ma Y, Lu Y, et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nature Communications,2020,11(1):4463. doi: 10.1038/s41467-020-18284-0
    [90] Xu Z, Ma R, Wang X. Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors[J]. Energy Storage Materials,2022,46:233-242. doi: 10.1016/j.ensm.2022.01.011
    [91] Chang N, Li T, Li R, et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy & Environmental Science,2020,13(10):3527-3535.
    [92] Tron A, Jeong S, Park Y D, et al. Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation[J]. ACS Sustainable Chemistry & Engineering,2019,7(17):14531-14538.
    [93] Li F, Yu L, Hu Q, et al. Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation[J]. Science China Materials,2021,64(7):1609-1620. doi: 10.1007/s40843-020-1570-5
    [94] Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science,2017,356(6336):415-418. doi: 10.1126/science.aak9991
    [95] Song M, Tan H, Chao D, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials,2018,28(41):1802564. doi: 10.1002/adfm.201802564
    [96] Xia C, Guo J, Lei Y, et al. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate iIntercalation cathode[J]. Advanced Materials,2018,30(5):1705580. doi: 10.1002/adma.201705580
    [97] Zeng X, Hao J, Wang Z, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials,2019,20:410-437. doi: 10.1016/j.ensm.2019.04.022
    [98] Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule,2019,3(5):1289-1300. doi: 10.1016/j.joule.2019.02.012
    [99] Han D, Wu S, Zhang S, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small,2020,16(29):e2001736. doi: 10.1002/smll.202001736
    [100] An G H, Hong J, Pak S, et al. 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors[J]. Advanced Energy Materials,2020,10(3):1902981. doi: 10.1002/aenm.201902981
    [101] Yun K, Jang H, An G H. Stable anode enabled by an embossed and punched structure for a high‐rate performance Zn‐ion hybrid capacitor[J]. International Journal of Energy Research,2021,46(6):7175-7185.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  321
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-29
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回