留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage

CHEN Hong MU Jian-jia BIAN Yu-hua GAO Xuan-wen WANG Da LIU Zhao-meng LUO Wen-bin

陈红, 穆建佳, 边煜华, 高宣雯, 王达, 刘朝孟, 骆文彬. 三维双金属硫化物Co9S8/MoS2/C异质结用于增强钠离子存储. 新型炭材料(中英文), 2023, 38(3): 510-521. doi: 10.1016/S1872-5805(23)60731-0
引用本文: 陈红, 穆建佳, 边煜华, 高宣雯, 王达, 刘朝孟, 骆文彬. 三维双金属硫化物Co9S8/MoS2/C异质结用于增强钠离子存储. 新型炭材料(中英文), 2023, 38(3): 510-521. doi: 10.1016/S1872-5805(23)60731-0
CHEN Hong, MU Jian-jia, BIAN Yu-hua, GAO Xuan-wen, WANG Da, LIU Zhao-meng, LUO Wen-bin. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage. New Carbon Mater., 2023, 38(3): 510-521. doi: 10.1016/S1872-5805(23)60731-0
Citation: CHEN Hong, MU Jian-jia, BIAN Yu-hua, GAO Xuan-wen, WANG Da, LIU Zhao-meng, LUO Wen-bin. A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage. New Carbon Mater., 2023, 38(3): 510-521. doi: 10.1016/S1872-5805(23)60731-0

三维双金属硫化物Co9S8/MoS2/C异质结用于增强钠离子存储

doi: 10.1016/S1872-5805(23)60731-0
基金项目: 国家自然科学基金(No.52272194,52204308);辽宁省“兴辽英才”青年拔尖人才项目(No. XLYC2007155);中央高校基本科研业务费(N2025018,N2025009);中国博士后基金(2022M710639)
详细信息
    通讯作者:

    高宣雯,副教授. E-mail:gaoxuanwen@mail.neu.edu.cn

    骆文彬,教授. E-mail:luowenbin@smm.neu.edu.cn

  • 中图分类号: TB33

A bimetallic sulfide Co9S8/MoS2/C heterojunction in a three-dimensional carbon structure for increasing sodium ion storage

Funds: This work was supported by the National Natural Science Foundation of China (52272194, 52204308), Liaoning Revitalization Talents Program (XLYC2007155) and the Fundamental Research Funds for the Central Universities (N2025018, N2025009) and China Postdoctoral Science Foundation (2022M710639)
More Information
  • 摘要: 钠离子电池(SIBs)的阳极材料一直备受研究关注,但缓慢的动力学行为和较大的体积变化限制了其在实际应用中的推广。为了克服这些问题,本研究利用金属有机框架和MoS2的优异性能,设计并制备了具有稳定骨架结构的复合材料。以Co-ZIF为前驱体,添加Mo源材料,在高温硫化烧结的过程中,构建了花状的Co9S8/MoS2/C复合材料,探究其在不同温度条件下的结构和电化学性能。此外,通过密度泛函理论(DFT)分析了Co9S8(001)/MoS2异质结对扩散动力学的影响。结果表明,电子结构在异质结构的界面处发生了重塑,Co9S8/MoS2表现出典型的金属性和显著增强的电子导电性。在所有样品中,700 °C合成的阳极材料Co9S8/MoS2/C具有更稳定的结构和优异的电化学性能。当电流密度从4000恢复到40 mA g−1时,Co9S8/MoS2/C-700的放电容量可以从368 mAh g−1完全恢复到571 mAh g−1,并稳定在543 mAh g−1。综上所述,本研究提供了一些关于异质结材料合理制备的思路,有助于设计高性能的金属钠离子电池负极复合材料。
  • FIG. 2363.  FIG. 2363.

    FIG. 2363..  FIG. 2363.

    Figure  1.  (a) Schematic illustration of the flower-like Co9S8/MoS2/C heteroball. (b) XRD patterns ZIF-67 precursor and Co9S8/MoS2/C synthesized at 600 °C, 700 °C, 800 °C. (c) SEM image and (d, e) HRTEM image of Co9S8/MoS2/C-700. (f-k) EDS mapping images of the flower-like Co9S8/MoS2/C-700 hetero-ball

    Figure  2.  XPS spectra of the Co9S8/MoS2/C-700: (a) Mo 3d spectra, (b) Co 2p spectra, (c) N 1s spectra and (d) S 2p spectra

    Figure  3.  Sodium storage performance of the electrode: (a) charge–discharge profiles at 40 mA g−1 and (b) CV curves at a voltage window of 0.01-3 V for the Co9S8/MoS2/C–700 composite. (c) Cycle performance at 40 mA g−1, (d) cycle performance at 2000 mA g−1 and (e) rate capability at different current densities for the Co9S8/MoS2/C-600 composite, Co9S8/MoS2/C-700 and Co9S8/MoS2/C-800 anodes. Note that the electrodes were first 5 cycles activated at 40 mA g−1 for a few cycles. (f) Nyquist plots of the Co9S8/MoS2/C-600, Co9S8/MoS2/C-700 and Co9S8/MoS2/C-800 electrode materials. (g) CV curves at different scan rates and (h) the peak current plotted against scan rates at 3 specific redox peaks of Co9S8/MoS2/C-700

    Figure  4.  (a) The calculated PDOS of Co and S atoms in Co9S8. (b) The calculated PDOS of Mo and S atoms. (c) Calculated TDOS of Co9S8/MoS2 heterojunction and PDOS of Mo, Co and S. (d) The side view, top view and bottom view of the charge density difference (0.015 e·bohr−3) for Co9S8/MoS2. (e) Planar-averaged electron density difference Δρ(z) for Co9S8/MoS2. The violet and aquamarine areas indicate electron depletion and accumulation regions, respectively. (f) Co9S8/MoS2 heterojunction slab model. The green and blue dashed lines denote Fermi level and the vacuum energy level, respectively

  • [1] Mahmood N, Tang T, and Hou Y. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective[J]. Advanced Energy Materials, 2016, 6(17): 1600374.
    [2] Liu Z M, Wang J, Ding H B, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano,2018,12(8):8456-8466. doi: 10.1021/acsnano.8b03961
    [3] Delmas C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8 (17): 1703137.
    [4] Liu Z M, Wang J, and Lu B A. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65(15): 1242-1251.
    [5] Liu Z M, Wang J, Jia X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano,2019,13(9):10631-10642. doi: 10.1021/acsnano.9b04893
    [6] Ellis B L and Nazar L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State & Materials Science, 2012, 16(4): 168-177.
    [7] Balogun M S, Luo Y, Qiu W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon,2016,98:162-178. doi: 10.1016/j.carbon.2015.09.091
    [8] Zhao C Y, Wang X, Kong J H, et al. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: A novel van der waals heterostructure for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(3):2372-2379.
    [9] Kong D Z, Cheng C W, Wang Y, et al. Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes[J]. Journal of Materials Chemistry A,2017,5(19):9122-9131. doi: 10.1039/C7TA01172E
    [10] Su D W, Dou S X, and Wang G X. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance[J]. Advanced Energy Materials, 2015, 5(6), 1401205.
    [11] Lao M M, Zhang Y, Luo W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries [J]. Advanced Materials, 2017, 29(48): 1700622.
    [12] Zhou L F, Gao X W, Du T, et al. Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries[J]. Chemical Engineering Journal,2022,435:134838.
    [13] Zhou F, Xin S, Liang H W, et al. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and Enhanced Electrochemical Performance[J]. Angewandte Chemie-International Edition,2014,53(43):11552-11556. doi: 10.1002/anie.201407103
    [14] Yu X Y, Hu H, Wang Y W, et al. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties[J]. Angewandte Chemie-International Edition,2015,54(25):7395-7398. doi: 10.1002/anie.201502117
    [15] Zhao L, Yu X Q, Yu J Z, et al. Remarkably improved electrode performance of bulk MnS by forming a solid solution with FeS-understanding the Li storage mechanism[J]. Advanced Functional Materials,2014,24(35):5557-5566. doi: 10.1002/adfm.201400934
    [16] Chen G, Yan L T, Luo H M, et al. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage[J]. Advanced Materials,2016,28(35):7580-7602. doi: 10.1002/adma.201600164
    [17] Cao L, Liang X H, Ou X, et al. Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance[J]. Advanced Functional Materials, 2020, 30(16): 1910732.
    [18] Ni J F, Sun M L, Li L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field[J]. Advanced Materials,2019,31(41):1902603.
    [19] Luo W, Li F, Li Q D, et al. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage[J]. ACS Applied Materials & Interfaces,2018,10(8):7201-7207.
    [20] Zheng Y, Zhou T F, Zhang C F, et al. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries[J]. Angewandte Chemie-International Edition,2016,55(10):3408-3413. doi: 10.1002/anie.201510978
    [21] Wang Y Z, Xie W Y, Li D Z, et al. One-pot synthesis of hierarchical Co1-XS/NC@MoS2/C hollow nanofibers based on one-dimensional metal coordination polymers for enhanced lithium and sodium-ion storage[J]. Science Bulletin,2020,65(17):1460-1469. doi: 10.1016/j.scib.2020.05.006
    [22] Chen F Z, Shi D, Yang M Z, et al. Novel designed MnS-MoS2 heterostructure for fast and stable Li/Na storage: Insights into the advanced mechanism attributed to phase engineering[J]. Advanced Functional Materials, 2021, 31(6), 2007132.
    [23] Furukawa H, Cordova K E, O'Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444.
    [24] Wales D J, Grand J, Ting V P, et al. Gas sensing using porous materials for automotive applications[J]. Chemical Society Reviews,2015,44(13):4290-4321. doi: 10.1039/C5CS00040H
    [25] Chughtai A H, Ahmad N, Younus H A, et al. Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations[J]. Chemical Society Reviews,2015,44(19):6804-6849. doi: 10.1039/C4CS00395K
    [26] Xu X, Cao R, Jeong S, et al. Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate Lithium batteries[J]. Nano Letters,2012,12(9):4988-4991. doi: 10.1021/nl302618s
    [27] Cao X H, Zheng B, Rui X H, et al. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors[J]. Angewandte Chemie-International Edition,2014,53(5):1404-1409. doi: 10.1002/anie.201308013
    [28] Cao X H, Zheng B, Shi W H, et al. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors[J]. Advanced Materials,2015,27(32):4695-4701. doi: 10.1002/adma.201501310
    [29] Zhao M T, Wang Y X, Ma Q L, et al. Ultrathin 2D metal-organic framework nanosheets[J]. Advanced Materials,2015,27(45):7372-7378. doi: 10.1002/adma.201503648
    [30] Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting[J]. J Am Chem Soc,2018,140(7):2610-2618. doi: 10.1021/jacs.7b12420
    [31] Kresse G and Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys Rev B Condens Matter, 1993, 47(1): 558-561.
    [32] Kresse G and Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys Rev B Condens Matter, 1994, 49(20): 14251-14269.
    [33] Zhou L F, Gao X W, Du T, et al. New phosphate Zn2Fe(Po4)2 cathode material for nonaqueous zinc ion batteries with long life span[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 8888-8895.
    [34] Lai L F, Huang G M, Wang X F, et al. Solvothermal syntheses of hollow carbon microspheres modified with -NH2 and -OH groups in one-step process[J]. Carbon,2010,48(11):3145-3156. doi: 10.1016/j.carbon.2010.04.053
    [35] Shao J, Gao T, Qu Q T, et al. Ultrafast Li-storage of MoS2 nanosheets grown on metal-organic framework-derived microporous nitrogen-doped carbon dodecahedrons[J]. Journal of Power Sources,2016,324:1-7. doi: 10.1016/j.jpowsour.2016.05.056
    [36] Wu A P, Tian C G, Yan H J, et al. Hierarchical MoS2@MoP core-shell heterojunction electrocatalysts for efficient hydrogen evolution reaction over a broad ph range[J]. Nanoscale,2016,8(21):11052-11059. doi: 10.1039/C6NR02803A
    [37] Li Y P, Liu J D, Chen C, et al. Preparation of NiCoP hollow quasi-polyhedra and their electrocatalytic properties for hydrogen evolution in alkaline solution[J]. ACS Applied Materials & Interfaces,2017,9(7):5982-5991.
    [38] Yu Z Y, Duan Y, Gao M R, et al. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting[J]. Chemical Science,2017,8(2):968-973. doi: 10.1039/C6SC03356C
    [39] Zhu Z, Yang Y, Guan Y, et al. Construction of a cobalt-embedded nitrogen-doped carbon material with the desired porosity derived from the confined growth of MOFs within graphene aerogels as a superior catalyst towards HER and ORR[J]. Journal of Materials Chemistry A,2016,4(40):15536-15545. doi: 10.1039/C6TA05196K
    [40] Wang J J, Luo C, Gao T, et al. An advanced MoS2/carbon anode for high-performance sodium-ion batteries[J]. Small,2015,11(4):473-481. doi: 10.1002/smll.201401521
    [41] Geng H, Yang J, Dai Z, et al. Co9S8/MoS2 yolk-shell spheres for advanced Li/Na storage[J]. Small, 2017, 13(14), 1603490.
    [42] Li D H, Sun Y Y, Chen S, et al. Highly porous FeS/carbon fibers derived from Fe-carrageenan biomass: High-capacity and durable anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(20):17175-17182.
    [43] Shi Z T, Kang W P, Xu J, et al. Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries[J]. Nano Energy,2016,22:27-37. doi: 10.1016/j.nanoen.2016.02.009
    [44] Zhang Z, Gan Y Q, Lai Y Q, et al. Cobalt sulfides/dodecahedral porous carbon as anode materials for Na-ion batteries[J]. RSC Advances,2015,5(125):103410-103413. doi: 10.1039/C5RA21589G
    [45] Wang P, Gou W, Jiang T, et al. An interlayer spacing design approach for efficient sodium ion storage in N-doped MoS2[J]. Nanoscale Horiz, 2023, 8: 473–482.
    [46] Li H, Su Y, Sun W W, et al. Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: Bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries[J]. Advanced Functional Materials,2016,26(45):8345-8353. doi: 10.1002/adfm.201601631
    [47] Tang L B, Li P Y, Cui R D, et al. Adjusting crystal orientation to promote sodium-ion transport in V5S8@graphene anode materials for high-performance sodium-ion batteries[J]. Small Methods,2023, 7(2):2201387.
    [48] Zhou W J, Lu J, Zhou K, et al. CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction[J]. Nano Energy,2016,28:143-150. doi: 10.1016/j.nanoen.2016.08.040
    [49] Chen Q, Sun S, Zhai T, et al. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery[J]. Advanced Energy Materials, 2018, 8(19), 1800054.
    [50] Zhao D C, Zhang Z, Ren J H, et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries[J]. Chemical Engineering Journal,2023, 451:138882.
    [51] Li S K, Zhang S S, Liu Z J, et al. Self-assembled monodisperse FeSe2 microflowers as an advanced anode material for sodium ion batteries[J]. Sustainable Energy & Fuels,2022,6(10):2498-2502.
    [52] Li H Y, Cheng Z, Zhang Q, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters,2018,18(11):7407-7413. doi: 10.1021/acs.nanolett.8b03845
    [53] Fang Y J, Luan D Y, Chen Y, et al. Rationally designed three-layered Cu2S@carbon@MoS2 hierarchical nanoboxes for efficient sodium storage[J]. Angewandte Chemie-International Edition,2020,59(18):7178-7183. doi: 10.1002/anie.201915917
    [54] Xu X, Zhao R S, Ai W, et al. Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance[J]. Advanced Materials, 2018, 30(27): 1800658.
    [55] Chao D L, Zhu C R, Yang P H, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications,2016, 7:12122.
    [56] Park M, Zhang X C, Chung M D, et al. A review of conduction phenomena in Li-ion batteries[J]. Journal of Power Sources,2010,195(24):7904-7929. doi: 10.1016/j.jpowsour.2010.06.060
    [57] Ren X C, Zhao Y X, Li Q W, et al. A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes[J]. Journal of Materials Chemistry A,2020,8(23):11598-11606. doi: 10.1039/D0TA04349D
    [58] Zhang X L, Huang L W, Zeng P, et al. Hierarchical MoS2 anchored on core-shell Si@C with increased active-sites and charge transfer for superior cycling and rate capability in lithium-ion batteries[J]. Chemical Engineering Journal,2019,357:625-632. doi: 10.1016/j.cej.2018.09.163
    [59] Xia H, Yuan P, Zan L, et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-Nx towards enhanced sodium ion storage[J]. Angew Chem Int Ed Engl, 2023, 62(14): e2022182.
  • Supplementary Information2023-0003.pdf
  • 加载中
图(5)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  255
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 录用日期:  2023-03-01
  • 修回日期:  2023-02-28
  • 网络出版日期:  2023-03-23
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回