留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries

TIAN Qing-qing LI Xiao-ming XIE Li-jing SU Fang-yuan YI Zong-lin DONG Liang CHEN Cheng-meng

田青青, 李晓明, 谢莉婧, 苏方远, 易宗琳, 董良, 陈成猛. 烟煤衍生炭材料的炭化机制及其在锂/钠离子电池中的应用. 新型炭材料(中英文), 2023, 38(5): 939-953. doi: 10.1016/S1872-5805(23)60759-0
引用本文: 田青青, 李晓明, 谢莉婧, 苏方远, 易宗琳, 董良, 陈成猛. 烟煤衍生炭材料的炭化机制及其在锂/钠离子电池中的应用. 新型炭材料(中英文), 2023, 38(5): 939-953. doi: 10.1016/S1872-5805(23)60759-0
TIAN Qing-qing, LI Xiao-ming, XIE Li-jing, SU Fang-yuan, YI Zong-lin, DONG Liang, CHEN Cheng-meng. Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries. New Carbon Mater., 2023, 38(5): 939-953. doi: 10.1016/S1872-5805(23)60759-0
Citation: TIAN Qing-qing, LI Xiao-ming, XIE Li-jing, SU Fang-yuan, YI Zong-lin, DONG Liang, CHEN Cheng-meng. Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries. New Carbon Mater., 2023, 38(5): 939-953. doi: 10.1016/S1872-5805(23)60759-0

烟煤衍生炭材料的炭化机制及其在锂/钠离子电池中的应用

doi: 10.1016/S1872-5805(23)60759-0
基金项目: 陕西省自然科学基础研究计划 (2019JLZ-10);国家自然科学基金委员会面上基金项目 (22179139);山西省基础研究计划面上基金项目 (20210302123008, 20210302124101);山西省重点研发计划项目 (2022ZDYF028)
详细信息
    通讯作者:

    董 良,教授. E-mail:dongl@cumt.edu.cn

    陈成猛,研究员. E-mail:ccm@sxicc.ac.cn

  • 中图分类号: 127.1+1

Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries

More Information
  • 摘要: 近年来,人们对利用低温炭化工艺制备煤基无定形炭材料作为锂离子电池(LIBs)和钠离子电池(SIBs)的负极材料产生了兴趣。然而,煤衍生炭材料的炭化机制仍然不太清楚。因此,本文选取烟煤为原料,探究了煤炭到无定形炭材料的化学、微晶和孔隙结构演变过程。随着温度的升高(低于1 000 ℃),材料结构发生局部变化,碳层的迁移和小分子物质的释放导致了层间距(3.69-3.82 Å)和缺陷密度(1.26-1.90)逐渐增大,并且产生了丰富的纳米微孔结构。当温度升至1000~1600 °C时,层间距和缺陷密度开始逐渐减小。在LIBs中,经1 000 °C炭化制备的样品表现出最佳的电化学性能。在0.1 C倍率测试下可逆容量达到384 mAh g–1,在5 C倍率下仍能保持170 mAh g–1,表现出优异的倍率性能。在SIBs中,经1200 °C炭化制备的样品在0.1 C倍率测试下具有270.1 mAh g–1的可逆容量和高达86.8%的首次库伦效率。本研究为煤基炭材料的精细化制备提供了理论支撑。
  • FIG. 2656.  FIG. 2656.

    FIG. 2656..  FIG. 2656.

    Figure  1.  (a) TG-DTG curves of CC. (b) MS spectra of evolving gas from TG of CC. (c) O/C and H/C atomic ratio of CC and coal-derived disordered carbon materials. (d) FTIR spectrum, and (e) High-resolution O1s spectra of CC and coal-derived disordered carbon materials at different carbonization temperatures

    Figure  2.  (a-f) HR-TEM and SAED images of coal-derived disordered carbon materials. (g) Schematic illustration of the structural transformation from a highly-disordered state to a graphite-like structure

    Figure  3.  (a) XRD patterns of CC and coal-derived disordered carbon materials. (b) Schematic definition of the parameter R. (c) Variation curve of R values of CC and coal-derived disordered carbon materials at different carbonization temperatures. (d) Fitted Raman spectra, (e) Values of d002 and AD1/AG, (f) N2 adsorption-desorption isotherms, and (g) total open pore volume and average pore diameter of CC and coal-derived disordered carbon materials

    Figure  4.  (a) GCD curves at 0.1C, (b) Variation curve of specific capacity and ICE, and (c) Rate capacity at different current rates of coal-derived disordered carbon materials. (d) The three CV curves of CC-600, CC-1000 and CC-1400. (e) The CV curves at different rates of CC-1000. (f) A linear relationship between log (Peak Currents) and log (Sweep Rate), (g) Nyquist plots of the fresh cells of coal-derived disordered carbon materials. (h) GITT curves of the CC-1000 during the discharge/charge process in LIBs

    Figure  5.  (a) GCD curves at 0.1C, (b) Variation curve of specific capacity and ICE, and (c) Rate capacity at different current rates of coal-derived disordered carbon materials. (d) The 3 CV curves of CC-600, CC-1200 and CC-1400. (e) The CV curves at different rates of CC-1200. (f) A linear relationship between log (Peak Currents) and log (Sweep Rate), (g) Nyquist plots of the fresh cells of coal-derived disordered carbon materials. (h) GITT curves of the CC-1200 in SIBs

    Figure  6.  Possible carbonization mechanism of coal and the correlated structure-performance relationship in LIBs and SIBs

    Table  1.   The contents of O1s peaks of coal-derived disordered carbon materials

    B.E. (eV)AssignmentCCCC-600CC-800CC-1000CC-1200CC-1400CC-1600
    534.8O―H1.031.051.081.001.241.300.93
    533.4 C―O5.503.482.272.692.522.092.07
    532.1C=O6.852.351.952.422.011.771.84
    下载: 导出CSV

    Table  2.   Physical parameters of coal-derived disordered carbon materials

    SampleCCCC-600CC-800CC-1000CC-1200CC-1400CC-1600
    R2.031.501.902.172.202.353.17
    2θ (°)24.1224.0023.5423.2923.5423.7224.78
    d002 (Å)3.693.713.783.823.783.753.59
    AD1/AG1.261.721.731.901.731.501.49
    下载: 导出CSV

    Table  3.   Pore structure parameters of coal-derived disordered carbon materials

    SampleSBETa
    (m2 g–1)
    Vtota
    (cm3 g–1)
    Davea
    (nm)
    Ture densityb
    (g cm–3)
    Vclose pores
    (cm3 g–1)
    SBETc
    (m2 g–1)
    CC2.720.008011.711.360.29133.70
    CC-600272.970.01522.231.550.20289.28
    CC-80038.560.02492.591.790.11318.95
    CC-10004.140.00737.061.850.10293.47
    CC-12002.030.006713.131.980.0681.49
    CC-14002.110.006913.071.730.142.55
    CC-16002.360.008013.471.540.211.69
    Note: a Testing under N2 atmosphere. b Testing under He atmosphere. c Testing under CO2 atmosphere.
    下载: 导出CSV
  • [1] Xing B L, Zeng H H, Huang G X, et al. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications[J]. Journal of Alloys and Compounds,2019,779:202-211. doi: 10.1016/j.jallcom.2018.11.288
    [2] Gao S J, Liu W F, Fu D J, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-460. doi: 10.1016/S1872–5805(22)60605–X
    [3] Slater M D, Kim D H, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. doi: 10.1002/adfm.201200691
    [4] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources,2010,195:2419-2430. doi: 10.1016/j.jpowsour.2009.11.048
    [5] Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [6] Udod I A. Sodium-graphite intercalation compound of the first stage: Two-dimensional structure and stability[J]. Synthetic Metals,1997,88(2):127-131. doi: 10.1016/S0379–6779(97)80890–9
    [7] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society,2001,148(48):803-811. doi: 10.1149/1.1379565
    [8] Yuan Y, Chen Z W, Yu H X, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [9] Ding J, Wang H L, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015. doi: 10.1021/nn404640c
    [10] Cheng J Y, Yi Z L, Wang Z B, et al. Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction[J]. Electrochimica Acta,2020,337(20):135736. doi: 10.1016/j.electacta.2020.135736
    [11] Yu J L, Tahmasebi A, Han Y N, et al. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Processing Technology,2013,106:9-20. doi: 10.1016/j.fuproc.2012.09.051
    [12] Peng Z F, Ning X J, Wang G W, et al. Structural characteristics and flammability of low-order coal pyrolysis semi-coke[J]. Journal of the Energy Institute,2020,93(4):1341-1353. doi: 10.1016/j.joei.2019.12.004
    [13] Shi M, Song C L, Tai Z G, et al. Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries[J]. Fuel,2021,292:120250. doi: 10.1016/j.fuel.2021.120250
    [14] Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology,2018,172:162-171. doi: 10.1016/j.fuproc.2017.12.018
    [15] Ehrburger P, Addoun A, Addoun F, et al. Carbonization of coals in the presence of alkaline hydroxides and carbonates: Formation of activated carbons[J]. Fuel,1986,65(10):1447-1449. doi: 10.1016/0016–2361(86)90121–3
    [16] Hsu L Y, Teng H S. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal[J]. Fuel Processing Technology,2000,64(1):155-166. doi: 10.1016/S0378–3820(00)00071–0
    [17] Zhao H Y, Wang L X, Jia D Z, et al. Coal based activated carbon nanofibers prepared by electrospinning[J]. Journal of Materials Chemistry A,2014,2(24):9338-9344. doi: 10.1039/C4TA00069B
    [18] Gao F, Qu J Y, Zhao Z B, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application[J]. Carbon,2014,80:640-650. doi: 10.1016/j.carbon.2014.09.008
    [19] Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel,2019,239:230-238. doi: 10.1016/j.fuel.2018.11.010
    [20] Moothi K, Lyuke S E, Meyyappan M, et al. Coal as a carbon source for carbon nanotube synthesis[J]. Carbon,2012,50(8):2679-2690. doi: 10.1016/j.carbon.2012.02.048
    [21] Sun W J, Wang N, Chu W, et al. The role of volatiles and coal structural variation in coal methane adsorption[J]. Science Bulletin,2015,60(5):532-540. doi: 10.1007/s11434–015–0747–6
    [22] Porada S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel,2004,83(9):1191-1196. doi: 10.1016/j.fuel.2003.11.007
    [23] Li J, Cao Y L, Wang L X, et al. Cost-effective synthesis of bamboo-structure carbon nanotubes from coal for reversible lithium storage[J]. RSC Advances,2017,7:34770-34775. doi: 10.1039/C7RA04047D
    [24] He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(46):19633-19640. doi: 10.1039/C4TA03323J
    [25] Zhao X J, Jia W, Wu X Y, et al. Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries[J]. Carbon,2020,156:445-452. doi: 10.1016/j.carbon.2019.09.065
    [26] Li M Y, Tsai W Y, Thapaliya B P, et al. Modified coal char materials with high rate performance for battery applications[J]. Carbon,2021,172:414-421. doi: 10.1016/j.carbon.2020.10.035
    [27] Wang K F, Sun F, Wang H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials,2022,32(34):2203725. doi: 10.1002/adfm.202203725
    [28] Wang Y H, Yang W, Yan F Z, et al. Study on coal molecular structure characteristics on methane adsorption performance under pyrolysis treatment[J]. Fuel,2022,328:125228. doi: 10.1016/j.fuel.2022.125228
    [29] Yang W, Wang Y H, Yan F Z, et al. Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis[J]. Energy,2020,254:124262. doi: 10.1016/j.energy.2022.124262
    [30] Hu J H, Chen Y Q, Qian K Z, et al. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3[J]. Fuel Processing Technology,2017,159:178-186. doi: 10.1016/j.fuproc.2017.01.042
    [31] Li Y, Wang Z H, Huang Z Y, et al. Effect of pyrolysis temperature on lignite char properties and slurrying ability[J]. Fuel Processing Technology,2015,134:52-58. doi: 10.1016/j.fuproc.2015.01.007
    [32] Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology,2012,104:22-33. doi: 10.1016/j.coal.2012.09.001
    [33] Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel,2016,185:701-708. doi: 10.1016/j.fuel.2016.08.038
    [34] Qi Y R, Lu Y X, Ding F X, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie, International Edition,2019,58(13):4361-4365. doi: 10.1002/anie.201900005
    [35] Song M X, Yi Z L, Xu R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials,2022,51:620-629. doi: 10.1016/j.ensm.2022.07.005
    [36] Li Z Q, Lu C J, Xia Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038
    [37] Zheng T, Xing W, Dahn J R. Carbons prepared from coals for anodes of lithium-ion cells[J]. Carbon,1996,34(12):1501-1507. doi: 10.1016/S0008–6223(96)00098–X
    [38] Dahn J R, Xing W, Gao Y. The “falling cards model” for the structure of microporous carbons[J]. Carbon,1997,35(6):825-830. doi: 10.1016/S0008–6223(97)00037–7
    [39] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [40] Meng D X, Yue C Y, Wang T, et al. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel,2021,287:119538. doi: 10.1016/j.fuel.2020.119538
    [41] Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process[J]. Journal of Thermal Analysis and Calorimetry,2016,123:773-783. doi: 10.1007/s10973–015–4972–7
    [42] Liang D C, Xie Q, Wan C R, et al. Evolution of structural and surface chemistry during pyrolysis of Zhundong coal in an entrained-flow bed reactor[J]. Journal of Analytical and Applied Pyrolysis,2019,140:331-338. doi: 10.1016/j.jaap.2019.04.010
    [43] Chen Y X, Xi B J, Huang M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621
    [44] Li X J, Hayashi J I, Li C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12-13):1700-1707. doi: 10.1016/j.fuel.2006.03.008
    [45] Chen M, Yu H W, Chen J H, et al. Effect of purification treatment on adsorption characteristics of carbon nanotubes[J]. Diamond and Related Materials,2007,16(4-7):1110-1115. doi: 10.1016/j.diamond.2006.12.061
    [46] Buiel E R, George A E, Dahn J R. Model of micropore closure in hard carbon prepared from sucrose[J]. Carbon,1999,37:1399-1407. doi: 10.1016/S0008–6223(98)00335–2
    [47] Ji H J, Mao Y N, Su H T. Effects of organic micromolecules in bituminous coal on its microscopic pore characteristics[J]. Fuel,2020,262:116529. doi: 10.1016/j.fuel.2019.116529
    [48] Evanoff K, Magasinski A, Yang J B, et al. Nanosilicon-coated graphene granules as anodes for Li-ion batteries[J]. Advanced Energy Materials,2011,1(4):495-498. doi: 10.1002/aenm.201100071
    [49] Sun Z F, Chen Y X, Xi B J, et al. Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage[J]. Energy Storage Materials,2022,53:482-491. doi: 10.1016/j.ensm.2022.09.031
    [50] Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries[J]. Advanced Energy Materials,2019,9(34):1901379. doi: 10.1002/aenm.201901379
    [51] Ruan J F, Zhao Y H, Luo S N, et al. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network[J]. Energy Storage Materials,2019,23:46-54. doi: 10.1016/j.ensm.2019.05.037
    [52] Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A,2016,4(17):6472-6478. doi: 10.1039/C6TA00950F
    [53] Sun N, Guan Z R X, Liu Y W, et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [54] Jin Y, Sun S X, Ou M Y, et al. High-performance hard carbon anode: tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials,2018,1(5):2295-2305. doi: 10.1021/acsaem.8b00354
  • 20230511supportting imformation.pdf
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  153
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 录用日期:  2023-06-12
  • 修回日期:  2023-06-12
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回