张梦天, 曲浩天, 周光敏. 揭示金属锂负极电化学行为的影响因素:电子转移和锂离子输运[J]. 新型炭材料, 2023, 38(4): 776-786. DOI: 10.1016/S1872-5805(23)60766-8
引用本文: 张梦天, 曲浩天, 周光敏. 揭示金属锂负极电化学行为的影响因素:电子转移和锂离子输运[J]. 新型炭材料, 2023, 38(4): 776-786. DOI: 10.1016/S1872-5805(23)60766-8
ZHANG Meng-tian, QU Hao-tian, ZHOU Guang-min. The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport[J]. New Carbon Mater., 2023, 38(4): 776-786. DOI: 10.1016/S1872-5805(23)60766-8
Citation: ZHANG Meng-tian, QU Hao-tian, ZHOU Guang-min. The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport[J]. New Carbon Mater., 2023, 38(4): 776-786. DOI: 10.1016/S1872-5805(23)60766-8

揭示金属锂负极电化学行为的影响因素:电子转移和锂离子输运

The factors that influence the electrochemical behavior of lithium metal anodes: electron transfer and Li-ion transport

  • 摘要: 锂金属负极被认为是下一代储能电池中最有应用前景的负极材料。然而,严重的且无法避免的锂枝晶生长和潜在的安全隐患阻碍了其实际应用的发展。结构化碳基集流体负极结构能改善锂离子的输运,还能减缓电子转移的速度,同时已被证明能有效地抑制锂枝晶生长,但仍需更深入地理解基本的电化学原理来研究电荷转移和离子输运的协同作用。本文模拟并量化了控制锂离子电化学行为的两个关键过程,即电子转移和锂离子输运因素。通过有限元法可视化了三维电池模型(锂//电解液//锂)中的局部沉积速率,过电位以及锂离子浓度,揭示了锂离子输运速度和电子转移之间的竞争关系。当电子转移相对较慢时,负极表面附近有足够的锂离子可以发生反应,锂负极的沉积行为则由电子转移控制。然而,在锂离子的输运速率低于电子转移速率的情况下,负极表面的锂离子将会持续消耗,出现锂离子耗尽的情况,锂离子输运将主导锂负极的沉积过程,最终导致锂枝晶形貌。因此,在快充条件下和实际应用中,降低锂负极的反应活性和加速锂离子输运是获得锂金属负极均匀沉积形貌的关键。

     

    Abstract: Structured carbon-based hosts for the Li anode both improve the transport of Li-ions and reduce the electron transfer rate and have proven to be an effective way to suppress dendrite growth in lithium metal anodes. An in-depth understanding of these effects is needed to clarify the intrinsic electrochemical mechanism involved. We used the finite element method to simulate the two crucial processes controlling Li-ion behavior, electron transfer and Li-ion transport, and visualized the local deposition rate, the overpotential, and the Li-ion concentration in a three-dimensional (3D) Li//electrolyte//Li cell. Our analysis showed a competitive relationship between the rates of Li-ion transport and electron transfer. When the electron transfer rate is relatively slow, there are sufficient Li-ions available near the anode surface and the deposition behavior is controlled by electron transfer. However, when the number of Li-ions is low, Li-ion transport dominates the deposition process because it is unable to keep up with electron transfer, and this causes dendrite formation. Therefore, reducing the reactivity of the Li anode and accelerating Li-ion transport are the two key factors to produce uniform Li metal deposition on the anode, particularly under fast charging conditions and in practical use.

     

/

返回文章
返回