留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon-based materials for advanced lithium metal batteries based on carbon units of different dimensions

ZHANG Xing-hao XIE Ting KONG De-bin ZHI Lin-jie

张兴豪, 谢挺, 孔德斌, 智林杰. 用于高性能金属锂电池的炭材料维度化设计. 新型炭材料(中英文), 2023, 38(4): 583-598. doi: 10.1016/S1872-5805(23)60768-1
引用本文: 张兴豪, 谢挺, 孔德斌, 智林杰. 用于高性能金属锂电池的炭材料维度化设计. 新型炭材料(中英文), 2023, 38(4): 583-598. doi: 10.1016/S1872-5805(23)60768-1
ZHANG Xing-hao, XIE Ting, KONG De-bin, ZHI Lin-jie. Carbon-based materials for advanced lithium metal batteries based on carbon units of different dimensions. New Carbon Mater., 2023, 38(4): 583-598. doi: 10.1016/S1872-5805(23)60768-1
Citation: ZHANG Xing-hao, XIE Ting, KONG De-bin, ZHI Lin-jie. Carbon-based materials for advanced lithium metal batteries based on carbon units of different dimensions. New Carbon Mater., 2023, 38(4): 583-598. doi: 10.1016/S1872-5805(23)60768-1

用于高性能金属锂电池的炭材料维度化设计

doi: 10.1016/S1872-5805(23)60768-1
基金项目: 国家自然科学基金(U20A20131,52102274);国家节能低碳材料生产应用示范平台项目(TC220H06N);重质油国家重点实验室开放基金资助项目(SKLHOP202101012)
详细信息
    通讯作者:

    智林杰,教授. E-mail:zhilj@upc.edu.cn

  • 中图分类号: TQ127.1+1

Carbon-based materials for advanced lithium metal batteries based on carbon units of different dimensions

Funds: National Natural Science Foundation of China (U20A20131, 52102274), National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program (TC220H06N), and the State Key Laboratory of Heavy Oil Processing (SKLHOP202101012)
More Information
    Author Bio:

    张兴豪和谢挺为共同第一作者

    Corresponding author: ZHI Lin-jie, Professor. E-mail: zhilj@upc.edu.cn
  • 摘要: 为发展下一代高性能电池,具有超高比容量(3860 mAh g−1)和低氧化还原电位(相对于标准氢电极(SHE) −3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的商业化应用进程。炭材料由于具有高电子迁移率、稳定的电化学性能、可调节的物理化学性质以及质量轻等特点,被认为是克服这些问题非常有前景的一种金属锂宿主/载体材料。基于此,作者讨论了炭宿主/载体调控和设计方面取得的最新进展,并基于炭材料单元维度变化,总结和讨论碳宿主/载体的锂亲和性改性策略及炭材料单元维度变化和锂亲和性调控与电化学性能的关系。最后,面向实用化可充电金属锂电池,提出高性能炭宿主/载体合理构建的发展方向和前景。
  • FIG. 2496.  FIG. 2496.

    FIG. 2496..  FIG. 2496.

    Figure  1.  (a) Schematic diagrams of the Li deposition/dissolution processes on different substrates. (b) SEM image after initial Li deposition. (c) Cycling performances at different current rates[43]. Reproduced by permission of Nature Publishing Group

    Figure  2.  (a) Schematic of the nanocapsules design. (b, c) Voltage profile of hollow carbon shells (b) without and (c)with Au NPs during Li deposition process, respectively[44]. Reproduced by permission of Nature Publishing Group

    Figure  3.  (a) Synthetic approach. (b) TEM image, and (c) Coulombic efficiencies of the H-SiO2/CNTs at different current densities (0.2 and 0.5 mA cm−2, respectively)[58]. Reproduced by permission of American Chemical Society

    Figure  4.  (a) Schematic presentation of the uniform Li metal deposition process on 3D host modified by Ag nanoseeds, (b) SEM images of AgNP/CNFs at different cycle stages[64]. Reproduced by permission of Wiley-VCH

    Figure  5.  (a) Schematic fabrication of a sandwich-like composite electrode film[88]. Reproduced by permission of Nature Publishing Group. (b) Fabrication process, and rate capabilities of the N-doped graphene–Li electrodes[91]. Reproduced by permission of Wiley-VCH. (c) Fabrication process, and rate performance of the hierarchical 3D-AGBN host[95]. Reproduced by permission of Wiley-VCH. (d) Fabrication process, SEM image and cyclic stability of the 3D G/Li anode[98]. Reproduced by permission of Wiley-VCH

    Figure  6.  (a) Fabrication process, (b-c) SEM images, and (d) cyclic stability of the CTC electrode[117]. Reproduced by permission of Elsevier

    Figure  7.  (a) Fabrication process, SEM image, and photographs of the NPCC-Li electrode[119]. Reproduced by permission of Wiley-VCH. (b) Preparation process of the NPCM@CC[121]. Reproduced by permission of the Royal Society of Chemistry. (c) Synthetic process and cyclic stability of the CFC/Li electrode[123]. Reproduced by permission of American Chemical Society

  • [1] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. doi: 10.1038/nchem.2085
    [2] Van Noorden R. A Better Battery [J]. Nature 2014, 507: 26-28.
    [3] Armand M, Tarascon J M. Building Better Batteries [J]. Nature 2008, 451: 652-657.
    [4] Obrovac M N, Chevrier V L. Alloy negative electrodes for Li-ion batteries[J]. Chemical Reviews,2014,114(23):11444-502. doi: 10.1021/cr500207g
    [5] Park J, Yu S H, Sung Y E. Design of structural and functional nanomaterials for lithium-sulfur batteries [J]. Nano Today 2018, 18: 35-64.
    [6] Luo B, Wang B, Li X, et al. Graphene-confined Sn nanosheets with enhanced lithium storage capability[J]. Advanced Materials,2012,24:3538-3543. doi: 10.1002/adma.201201173
    [7] Zhang X, Wang D, Qiu X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications,2020,11:3826. doi: 10.1038/s41467-020-17686-4
    [8] Wu S, Han C, Iocozzia J, et al. Germanium-based nanomaterials for rechargeable batteries[J]. Angewandte Chemie International Edition,2016,55(28):7898-922. doi: 10.1002/anie.201509651
    [9] Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J]. Nature Energy, 2017, 3 (1): 16-21.
    [10] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [11] Chu F, Hu J, Wu C, et al. Metal-organic frameworks as electrolyte additives to enable ultrastable plating/stripping of Li anode with dendrite inhibition [J]. ACS Applied Materials & Interfaces, 2019, 11 (4): 3869-3879.
    [12] Foroozan T, Soto F A, Yurkiv V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Advanced Functional Materials,2018,28(15):1705917. doi: 10.1002/adfm.201705917
    [13] Haregewoin A M, Wotango A S, Hwang B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science,2016,9(6):1955-1988. doi: 10.1039/C6EE00123H
    [14] Hu Z, Zhang S, Dong S, et al. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes[J]. Chemistry of Materials,2017,29(11):4682-4689. doi: 10.1021/acs.chemmater.7b00091
    [15] Luo W, Zhou L, Fu K, et al. A thermally conductive separator for stable Li metal anodes[J]. Nano Letters,2015,15(9):6149-54. doi: 10.1021/acs.nanolett.5b02432
    [16] Markevich E, Salitra G, Chesneau F, et al. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution[J]. ACS Energy Letters,2017,2(6):1321-1326. doi: 10.1021/acsenergylett.7b00300
    [17] Rehnlund D, Ihrfors C, Maibach J, et al. Dendrite-free lithium electrode cycling via controlled nucleation in low LiPF6 concentration electrolytes[J]. Materials Today,2018,21(10):1010-1018.
    [18] Tikekar M D, Choudhury S, Tu Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries [J]. Nature Energy, 2016, 1 (9): 16114.
    [19] Wu H, Cao Y, Geng L, et al. In situ formation of stable interfacial coating for high performance lithium metal anodes[J]. Chemistry of Materials,2017,29(8):3572-3579. doi: 10.1021/acs.chemmater.6b05475
    [20] Zheng J, Engelhard M H, Mei D, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy,2017,2(3):17012.
    [21] Chi S S, Liu Y, Song W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials,2017,27(24):1700348. doi: 10.1002/adfm.201700348
    [22] Hafez A M, Jiao Y, Shi J, et al. Stable metal anode enabled by porous lithium foam with superior ion accessibility[J]. Advanced Materials,2018,30(30):e1802156. doi: 10.1002/adma.201802156
    [23] Ke X, Cheng Y, Liu J, et al. Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage[J]. ACS Applied Materials & Interfaces,2018,10(16):13552-13561.
    [24] Lu Z, Liang Q, Wang B, et al. Graphitic carbon nitride induced micro-electric field for dendrite-fFree lithium metal anodes[J]. Advanced Energy Materials,2019,9(7):1803186. doi: 10.1002/aenm.201803186
    [25] Wang S H, Yin Y X, Zuo T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials,2017,29(40):1703729. doi: 10.1002/adma.201703729
    [26] Yun Q, He Y B, Lv W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials,2016,28(32):6932. doi: 10.1002/adma.201601409
    [27] Zhang X, Lv R, Wang A, et al. MXene aerogel scaffolds for high-rate lithium metal anodes[J]. Angewandte Chemie International Edition,2018,57(46):15028-15033. doi: 10.1002/anie.201808714
    [28] Zhao H, Lei D, He Y-B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials,2018,8(19):1800266. doi: 10.1002/aenm.201800266
    [29] El-Kady M F, Shao Y, Kaner R B. Graphene for batteries, supercapacitors and beyond[J]. Nature Reviews Materials,2016,1(7):16033. doi: 10.1038/natrevmats.2016.33
    [30] Ji L, Meduri P, Agubra V, et al. Graphene-based nanocomposites for energy storage[J]. Advanced Energy Materials,2016,6(16):1502159. doi: 10.1002/aenm.201502159
    [31] Li T, Liu H, Shi P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals,2018,37(6):449-458.
    [32] Liu L, Yin Y X, Li J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials,2018,30(10):1706216. doi: 10.1002/adma.201706216
    [33] Lyu T, Luo F, Wang D, et al. Carbon/lithium composite anode for advanced lithium metal batteries: Design, progress, in situ characterization, and perspectives[J]. Advanced Energy Materials,2022,12(36):2201493. doi: 10.1002/aenm.202201493
    [34] Ye H, Xin S, Yin Y-X, et al. Advanced porous carbon materials for high-efficient lithium metal anodes[J]. Advanced Energy Materials,2017,7(23):1700530. doi: 10.1002/aenm.201700530
    [35] Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials,2015,14(3):271. doi: 10.1038/nmat4170
    [36] Qutaish H, Han S A, Rehman Y, et al. Porous carbon architectures with different dimensionalities for lithium metal storage[J]. Science and Technology of Advanced Materials,2022,23(1):169-188. doi: 10.1080/14686996.2022.2050297
    [37] Hu H, Cheng H, Liu Z, et al. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries[J]. Nano Letters,2015,15:5116-5123. doi: 10.1021/acs.nanolett.5b01294
    [38] Wang J, Yang H, Chen Z, et al. Double-shelled phosphorus and nitrogen codoped carbon nanospheres as efficient polysulfide mediator for high-performance lithium-sulfur batteries[J]. Advanced Science,2018:1800621.
    [39] Liu T, Dai C, Jia M, et al. Selenium embedded in metal-organic framework derived hollow hierarchical porous carbon spheres for advanced lithium-selenium batteries[J]. ACS Applied Materials & Interfaces,2016,8(25):16063-16070.
    [40] Xue P, Zhai Y, Wang N, et al. Selenium@hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries[J]. Chemical Engineering Journal,2020,392:123676. doi: 10.1016/j.cej.2019.123676
    [41] Ye H, Yin Y X, Zhang S F, et al. Advanced Se–C nanocomposites: a bifunctional electrode material for both Li–Se and Li-ion batteries[J]. Journal of Materials Chemistry A,2014,2(33):13293.
    [42] Zhang H, Zhou L, Huang X, et al. Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage[J]. Nano Research,2016,9(12):3725-3734. doi: 10.1007/s12274-016-1243-2
    [43] Zheng G, Lee S W, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes[J]. Nature Nanotechnology,2014,9(8):618-23. doi: 10.1038/nnano.2014.152
    [44] Yan K, Lu Z, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy,2016,1(3):16010.
    [45] Jiang Z, Meng C, Zhu W, et al. Interfacial anchored sesame ball-like Ag/C to guide lithium even plating and stripping behavior[J]. ACS Applied Materials & Interfaces,2023,15(1):1934-1643.
    [46] Ye H, Xin S, Yin Y X, et al. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society,2017,139(16):5916-5922. doi: 10.1021/jacs.7b01763
    [47] Zhang F, Liu P, Tian Y, et al. Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes[J]. Journal of Materials Chemistry A,2022,10(3):1463-1472.
    [48] Choi S H, Im K, Yoo S J, et al. Feasibility of a spherical hollow carbon framework as a stable host material for reversible metallic Li storage[J]. ACS Applied Materials & Interfaces,2021,13(36):42732-42740.
    [49] Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances,2019,5:eaau7728. doi: 10.1126/sciadv.aau7728
    [50] Abdul Ahad S, Bhattacharya S, Kilian S, et al. Lithiophilic nanowire guided Li deposition in Li metal batteries [J]. Small 2023, 19 (2): e2205142.
    [51] Fang S, Shen L, Hoefling A, et al. A mismatch electrical conductivity skeleton enables dendrite–free and high stability lithium metal anode[J]. Nano Energy,2021,89:106421.
    [52] Kim J, Choi J, Kim P J. A new approach to stabilize the electrochemical performance of Li metal batteries through the structure alteration of CNT scaffolds[J]. Carbon,2023,203:426-435.
    [53] Fang Y, Luan D, Gao S, et al. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage[J]. Angewandte Chemie International Edition,2021,60(37):20102-20118. doi: 10.1002/anie.202104401
    [54] Yang G, Li Y, Tong Y, et al. Lithium plating and stripping on carbon nanotube sponge[J]. Nano Letters,2019,19(1):494-499. doi: 10.1021/acs.nanolett.8b04376
    [55] Sun Z, Jin S, Jin H, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials,2018,30(32):e1800884. doi: 10.1002/adma.201800884
    [56] Yang G, Tan J, Jin H, et al. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes[J]. Advanced Functional Materials,2018,28(32):1800595. doi: 10.1002/adfm.201800595
    [57] Xie J, Ye J, Pan F, et al. Incorporating flexibility into stiffness: Self-grown carbon nanotubes in melamine sponges enable a lithium-metal-anode capacity of 15 mAh cm−2 cyclable at 15 mA cm−2[J]. Advanced Materials,2019,31(7):e1805654.
    [58] Zuo T T, Yin Y X, Wang S H, et al. Trapping lithium into hollow silica microspheres with a carbon nanotube core for dendrite-free lithium metal anodes[J]. Nano Letters,2018,18(1):297-301. doi: 10.1021/acs.nanolett.7b04136
    [59] Wang G, Liu T, Fu X, et al. Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal,2021,414:128698. doi: 10.1016/j.cej.2021.128698
    [60] Mei Y, Zhou J, Hao Y, et al. High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite-free lithium metal anodes[J]. Advanced Functional Materials,2021,31(50):2106676. doi: 10.1002/adfm.202106676
    [61] Zuo T T, Wu X W, Yang C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes[J]. Advanced Materials,2017,29(29):1700389. doi: 10.1002/adma.201700389
    [62] Jin S, Sun Z, Guo Y, et al. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes[J]. Advanced Materials,2017,29(38):1700783. doi: 10.1002/adma.201700783
    [63] Shi P, Li T, Zhang R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials,2019,31(8):e1807131. doi: 10.1002/adma.201807131
    [64] Yang C, Yao Y, He S, et al. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode[J]. Advanced Materials,2017,29(38):1702714. doi: 10.1002/adma.201702714
    [65] Li T, Gu S, Chen L, et al. Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode[J]. Small,2022,18(33):e2203273.
    [66] Wei L, Deng N, Zhao H, et al. ZnF2/ZnS heterostructures@NC doped porous carbon nanofibers as interlayers for stable lithium metal anodes[J]. Composites Part B: Engineering,2022,230:109531. doi: 10.1016/j.compositesb.2021.109531
    [67] Shin H J, Abbas S, Kim J, et al. Near-perfect suppression of Li dendrite growth by novel porous hollow carbon fibers embedded with ZnO nanoparticles as stable and efficient anode for Li metal batteries[J]. Chemical Engineering Journal,2023,464:142713. doi: 10.1016/j.cej.2023.142713
    [68] Zheng N, Liang C, Wu C, et al. Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network[J]. Journal of Materials Chemistry A,2022,10(10):5391-5401.
    [69] Cui J, Yao S, Ihsan-Ul-Haq M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials,2019,9(1):1802777. doi: 10.1002/aenm.201802777
    [70] Zhang X, Li Y, Zhang H, et al. Fast capture and stabilization of Li-ions via physicochemical dual effects for an ultra-stable self-supporting Li metal anode[J]. Carbon Energy,2023:e348.
    [71] Lai Y, Yang T, Yang Y, et al. A lithiophilic and conductive interlayer for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal,2023,462:142223. doi: 10.1016/j.cej.2023.142223
    [72] Fang Y, Zeng Y, Jin Q, et al. Nitrogen-doped amorphous Zn-carbon multichannel fibers for stable lithium metal anodes[J]. Angewandte Chemie International Edition,2021,60(15):8515-8520. doi: 10.1002/anie.202100471
    [73] Sealy C. Holey graphene promises better energy storage[J]. Nano Today,2017,15:4-5.
    [74] Li X, Zhi L. Graphene hybridization for energy storage applications[J]. Chemical Society Reviews,2018,47(9):3189-3216. doi: 10.1039/C7CS00871F
    [75] Mao J, Iocozzia J, Huang J, et al. Graphene aerogels for efficient energy storage and conversion[J]. Energy & Environmental Science,2018,11(4):772-799. doi: 10.1039/C7EE03031B
    [76] Ren F, Lu Z, Zhang H, et al. Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene nanowalls[J]. Advanced Functional Materials,2018,28(50):1805638. doi: 10.1002/adfm.201805638
    [77] Cai Q, Qin X, Lin K, et al. Gradient structure design of a floatable host for preferential lithium deposition[J]. Nano Letters,2021,21(24):10252-10259. doi: 10.1021/acs.nanolett.1c03207
    [78] Jiang Y, Jiang J, Wang Z, et al. Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries[J]. Nano Energy,2020,70:104504.
    [79] Raji A O, Villegas Salvatierra R, Kim N D, et al. Lithium batteries with nearly maximum metal storage[J]. ACS Nano,2017,11(6):6362-6369.
    [80] Zhang R, Chen X R, Chen X, et al. Lithiophilic Sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [81] Bai M, Xie K, Yuan K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials,2018:e1801213.
    [82] Liu W, Xia Y, Wang W, et al. Pristine or highly defective? understanding the role of graphene structure for stable lithium metal plating[J]. Advanced Energy Materials,2018,9(3):1802918.
    [83] Song Q, Yan H, Liu K, et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation[J]. Advanced Energy Materials,2018,8(22):1800564. doi: 10.1002/aenm.201800564
    [84] Yang G, Chen J, Xiao P, et al. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode[J]. Journal of Materials Chemistry A,2018,6(21):9899-9905.
    [85] Zhang R, Wen S, Wang N, et al. N-Doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes[J]. Advanced Energy Materials,2018,8(23):1800914. doi: 10.1002/aenm.201800914
    [86] Li Z, Li X, Zhou L, et al. A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams[J]. Nanoscale,2018,10:4675.
    [87] Chen H, Yang Y, Boyle D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6(8):790-798.
    [88] Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology,2016,11(7):626-32. doi: 10.1038/nnano.2016.32
    [89] Liu S, Wang A, Li Q, et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes [J]. Joule 2018, 2 (1): 184-193.
    [90] Huang W, Yu Y, Hou Z, et al. Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity[J]. Energy Storage Mater,2020,33:329-335. doi: 10.1016/j.ensm.2020.08.032
    [91] Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):e1805334. doi: 10.1002/adma.201805334
    [92] Li Z, Li X, Zhou L, et al. A synergistic strategy for stable lithium metal anodes using 3D fluorinedoped graphene shuttle-implanted porous carbon networks[J]. Nano Energy,2018,49:179-185.
    [93] Pu J, Li J, Shen Z, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes[J]. Advanced Functional Materials,2018,28(41):1804133. doi: 10.1002/adfm.201804133
    [94] Pan L, Luo Z, Zhang Y, et al. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode[J]. ACS Applied Materials & Interfaces,2019,11(47):44383-44389.
    [95] Xue P, Liu S, Shi X, et al. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes[J]. Advanced Materials,2018,30(44):e1804165. doi: 10.1002/adma.201804165
    [96] Xia M, Zhang N, Ge C. Mesoporous silica-coated graphene nanosheets for uniform lithium deposition toward stable lithium metal anode[J]. Chemical Physics Letters,2021,765:138245. doi: 10.1016/j.cplett.2020.138245
    [97] Xu Q, Yang X, Rao M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Mater,2020,26:73-82. doi: 10.1016/j.ensm.2019.12.028
    [98] Deng W, Zhou X, Fang Q, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials,2018,8(12):1703152. doi: 10.1002/aenm.201703152
    [99] Yan J, Ye M, Zhang Y, et al. Graphene-enabled electric-field regulation and ionic redistribution around lithiophilic aurum nanoparticles toward a dendrite-free and 2000-cycle-life lithium metal battery[J]. Chemistry – A European Journal,2022,28(49):e202201151.
    [100] Yang T, Li L, Wu F, et al. A Soft Lithiophilic graphene aerogel for stable lithium metal anode[J]. Advanced Functional Materials,2020,30(30):2002013. doi: 10.1002/adfm.202002013
    [101] Zhang R, Wang N, Shi C, et al. Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode[J]. Carbon,2020,161:198-205.
    [102] Zhao C, Yu C, Li S, et al. Ultrahigh-capacity and long-life lithium-metal batteries enabled by engineering carbon nanofiber-stabilized graphene aerogel film host[J]. Small,2018,14(42):e1803310.
    [103] Zhu J, Cai D, Li J, et al. In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries[J]. Energy Storage Mater,2022,49:546-554. doi: 10.1016/j.ensm.2022.05.001
    [104] Luo C, Zhu H, Luo W, et al. Atomic-layer-deposition functionalized carbonized mesoporous wood fiber for high sulfur loading lithium sulfur batteries[J]. ACS Applied Materials & Interfaces,2017,9(17):14801-14807.
    [105] Wang M, Fan L, Tian D, et al. Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li-S batteries[J]. ACS Energy Letters,2018:1627-1633.
    [106] Cai W, Li G, Luo D, et al. The dual-play of 3D conductive scaffold embedded with Co, N codoped hollow polyhedra toward high-performance Li-S full cell[J]. Advanced Energy Materials,2018,8(34):1802561. doi: 10.1002/aenm.201802561
    [107] Zhang W, Xu B, Zhang L, et al. Co4 N-decorated 3D wood-derived carbon host enables enhanced cathodic electrocatalysis and homogeneous lithium deposition for lithium-sulfur full cells[J]. Small,2022,18(6):e2105664.
    [108] Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114:3584-3589.
    [109] Fang Y, Cai W, Zhu S, et al. Vesicle-shaped ZIF-8 shell shielded in 3D carbon cloth for uniform nucleation and growth towards long-life lithium metal anode[J]. Journal of Energy Chemistry,2021,54:105-110. doi: 10.1016/j.jechem.2020.05.067
    [110] Jin C, Sheng O, Zhang W, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Mater,2018,15:218-225. doi: 10.1016/j.ensm.2018.04.001
    [111] Jin C, Sheng O, Luo J, et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries[J]. Nano Energy,2017,37:177-186.
    [112] Li Z, Xu N, Sha Y, et al. Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries[J]. Sustainable Materials and Technologies,2020,24:e00158.
    [113] Liu F, Xu R, Hu Z, et al. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode[J]. Small,2019,15(5):e1803734.
    [114] Liu L, Yin Y X, Li J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule,2017,1(3):563-575.
    [115] Xiong W S, Xia Y, Jiang Y, et al. Highly conductive and robust three-dimensional host with excellent alkali metal infiltration boosts ultrastable lithium and sodium metal anodes[J]. ACS Applied Materials & Interfaces,2018,10(25):21254-21261.
    [116] Wang H, Lin D, Xie J, et al. An interconnected channel-like framework as host for lithium metal composite anodes[J]. Advanced Energy Materials,2019,9(7):1802720. doi: 10.1002/aenm.201802720
    [117] Zhang S, Wang D, Xu X, et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes[J]. Matter,2022,5(4):1263-1276.
    [118] Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries[J]. Energy Storage Mater,2018,14:222-229. doi: 10.1016/j.ensm.2018.04.006
    [119] Li K, Hu Z, Ma J, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials,2019,31(33):e1902399. doi: 10.1002/adma.201902399
    [120] Cheng F, Yang X, Ka O, et al. A 3D multifunctional host anode from commercial carbon cloth for lithium metal batteries[J]. Journal of Materials Chemistry A,2023,11(8):4205-4219.
    [121] Gan H, Wu J, Chen H, et al. Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes[J]. Journal of Materials Chemistry A,2020,8(27):13480-13489.
    [122] Yang T, Qian T, Shen X, et al. Single-cluster Au as an usher for deeply cyclable Li metal anodes[J]. Journal of Materials Chemistry A,2019,7(24):14496-14503.
    [123] Deng W, Zhu W, Zhou X, et al. Highly reversible Li plating confined in three-dimensional interconnected microchannels toward high-rate and stable metallic lithium anodes[J]. ACS Applied Materials & Interfaces,2018,10(24):20387-20395.
  • 加载中
图(8)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  160
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-06
  • 录用日期:  2023-07-05
  • 修回日期:  2023-07-04
  • 网络出版日期:  2023-07-07
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回