留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution

REN Xian-pei HU Qi-wei LING Fang WU Fei LI Qiang PANG Liu-qing

任先培, 胡启威, 凌芳, 吴飞, 李强, 庞柳青. 碳纳米管表面Co/MoSe2莫特-肖特基异质结的构筑及高效析氢性能. 新型炭材料(中英文), 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6
引用本文: 任先培, 胡启威, 凌芳, 吴飞, 李强, 庞柳青. 碳纳米管表面Co/MoSe2莫特-肖特基异质结的构筑及高效析氢性能. 新型炭材料(中英文), 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6
REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution. New Carbon Mater., 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6
Citation: REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing. Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution. New Carbon Mater., 2023, 38(6): 1059-1069. doi: 10.1016/S1872-5805(23)60782-6

碳纳米管表面Co/MoSe2莫特-肖特基异质结的构筑及高效析氢性能

doi: 10.1016/S1872-5805(23)60782-6
基金项目: 四川省自然科学基金项目(22NSFSC0335);DICP催化国家重点实验室项目(N-22-14)
详细信息
    通讯作者:

    庞柳青,工程师. E-mail:pangliuqing2021@fmac.ac.cn

  • 中图分类号: TQ127.1+1

Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution

Funds: This work was supported by the Sichuan Natural Science Foundation Project (22NSFSC0335) and the fund of the State Key Laboratory of Catalysis in DICP(N-22-14)
More Information
  • 摘要: 二硒化钼(MoSe2)是一种先进的电解水制氢催化剂,但其电催化性能还远不如金属铂(Pt)。将半导体与金属结合构建莫特-肖特基异质结是一种提高催化活性的有效途径。本文采用溶胶-凝胶工艺和热还原法在碳纳米管表面制备了金属钴(Co)/半导体MoSe2莫特-肖特基异质结(Co/MoSe2@CNT)。实验和理论计算结果表明Co/MoSe2莫特-肖特基异质结导致电子在界面处重新分布并形成一个内建电场,这不仅可以优化氢原子吸附的自由能,还可以提高析氢过程中电荷的传输效率。因此,Co/MoSe2@CNT获得了优异的析氢活性:在电流密度为10 mA cm−2时的过电势仅为185 mV、Tafel斜率为 69 mV dec−1。这项工作提供了一种新的策略来制备Co/MoSe2莫特-肖特基异质结,并突出了莫特-肖特基效应的重要意义,有利于未来开发出更高效的莫特-肖特基电催化剂。
  • FIG. 2778.  FIG. 2778.

    FIG. 2778..  FIG. 2778.

    Figure  1.  (a-c) SEM of MoSe2@CNT, Co@CNT and Co/MoSe2@CNT. (d) TEM image and (e) HRTEM image of Co/MoSe2@CNT. (f) An enlarged region indicated by a box in (e). (g) HAADF-STEM image and corresponding element mappings of the Co/MoSe2@CNT sample

    Figure  2.  (a) XRD patterns of Co@CNT, MoSe2@CNT and Co/MoSe2@CNT. (b) Raman spectra of Co/MoSe2@CNT and Co/MoSe2

    Figure  3.  (a) XPS survey spectrum of Co/MoSe2@CNT, high-resolution XPS spectra (b) Mo 3d, (c) Se 3d and (d) Co 2p

    Figure  4.  (a) LSV polarization curves, (b) η10 values, and (c) the corresponding Tafel plots of Co@CNT, MoSe2@CNT, Co/MoSe2@CNT, and Pt catalyst at a sweep rate of 10 mV s−1 in 0.5 mol L−1 H2SO4, respectively. (d) The Nyquist plots with the equivalent circuit given inset. (e) Electrochemical cyclic voltammogram of Co/MoSe2@CNT at various scan rates (20-100 mV s−1). (f) Cdl values of the different Pt-free catalysts

    Figure  5.  The proposed energy band diagrams of Co and MoSe2 before contact and after contact (Mott-Schottky heterojunction), where EF, Evac, Ev and Ec represents the Fermi energy, vacuum energy, valence band and conduction band potentials, respectively

    Figure  6.  DOS curves for (a) Co, (b) MoSe2 and (c) Co/MoSe2 heterojuctions; (d) The charge density difference in the interface between Co and MoSe2; (e) Gibbs free energy diagrams of Co, MoSe2 and Co/MoSe2

  • [1] Yang M, Zhang C H, Li N W, et al. Design and synthesis of hollow nanostructures for electrochemical water splitting[J]. Advanced Science,2022,9:2105135. doi: 10.1002/advs.202105135
    [2] Wang K, Tang F, Yao X, et al. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution[J]. New Carbon Materials,2022,37(6):1183-1192.
    [3] Wang T, Cao X, Jiao L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience,2021,1:69-74.
    [4] Pang L, Ma Q, Zhu C. Multifunctional amorphous Co phosphosulfide-coated Fe-Co carbonate hydroxide for highly efficient overall water splitting[J]. Journal of Electronic Materials,2023,52:1808-1818. doi: 10.1007/s11664-022-10194-9
    [5] Guo X, Wan X, Liu Q, et al. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction[J]. eScience,2022,2:304-310. doi: 10.1016/j.esci.2022.04.002
    [6] Lin L, Sun Z, Yuan M, et al. Significant enhancement of the performance of hydrogen evolution reaction through shapecontrolled synthesis of hierarchical dendrite-like platinum[J]. Journal of Materials Chemistry A,2018,6:8068-8077. doi: 10.1039/C8TA00993G
    [7] Yang Y, Kim J, Kim C, et al. Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH[J]. Nano Energy,2020,76:105114. doi: 10.1016/j.nanoen.2020.105114
    [8] Li R, Liang J, Li T, et al. Recent advances in MoS2-based materials for electrocatalysis[J]. Chemical Communications,2022,58:2259-2278. doi: 10.1039/D1CC04004A
    [9] Li W, Chen J, Xiao Z, et al. MoS2/graphene/carbonized melamine foam composite catalysts for the hydrogen evolution reaction[J]. New Carbon Materials,2020,35(5):540-546. doi: 10.1016/S1872-5805(20)60507-8
    [10] Yao Y, Liu C, Luo L, et al. Microwave hydrothermal synthesis of hierarchical Ce-doped MoSe2@CNTs as an efficient non-precious catalyst for hydrogen evolution in both acidic and alkaline media[J]. Materials Research Bulletin,2022,146:111625. doi: 10.1016/j.materresbull.2021.111625
    [11] Xue Y, Xu Y, Yan Q, et al. Coupling of Ru nanoclusters decorated mixed-phase (1T and 2H) MoSe2 on biomass-derived carbon substrate for advanced hydrogen evolution reaction[J]. Journal of Colloid and Interface Science,2022,617:594-603. doi: 10.1016/j.jcis.2022.03.033
    [12] Singh V K, Nakate U T, Bhuyan P, et al. Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Materials Chemistry A,2022,10:9067-9079. doi: 10.1039/D2TA00488G
    [13] Ren X P, Wei Q B, Wu F, et al. Binary V-Mo sulfides grown on CNTs with morphological and electronic modulation for enhanced hydrogen evolution[J]. CrystEngComm,2021,23:6668-6674. doi: 10.1039/D1CE00938A
    [14] Wang C, Wu X, Zhang X, et al. Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction[J]. Applied Physics Letters,2020,116:223901. doi: 10.1063/5.0008092
    [15] Xia L, Pan K, Wu H, et al. Few-layered WS2 anchored on Co, N-doped carbon hollow polyhedron for oxygen evolution and hydrogen evolution[J]. ACS Applied Materials & Interfaces,2022,14:22030-22040.
    [16] Nam J H, Jang M J, Jang H Y, et al. Room-temperature sputtered electrocatalyst WSe2 nanomaterials for hydrogen evolution reaction[J]. Journal of Energy Chemistry,2020,47:107-111. doi: 10.1016/j.jechem.2019.11.027
    [17] Gao B, Du X, Zhao Y, et al. Electron strain-driven phase transformation in transition-metal-co doped MoTe2 for electrocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2022,433:133768. doi: 10.1016/j.cej.2021.133768
    [18] Wang X, Wang J, Wei B, et al. Plasma tailoring in WTe2 nanosheets for efficiently boosting hydrogen evolution reaction[J]. Journal of Materials Science & Technology,2021,78:170-175.
    [19] Deng S, Yang F, Zhang Q, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,30:1802223. doi: 10.1002/adma.201802223
    [20] Wazir M B, Daud M, Safeer S, et al. Review on 2D molybdenum diselenide (MoSe2) and its hybrids for green hydrogen (H2) generation applications[J]. ACS Omega,2022,7:16856-16865. doi: 10.1021/acsomega.2c00330
    [21] Qian J, Wang T, Xia B, et al. Zn-doped MoSe2 nanosheets as high-performance electrocatalysts for hydrogen evolution reaction in acid media[J]. Electrochimica Acta,2019,296:701-708. doi: 10.1016/j.electacta.2018.10.089
    [22] Li S, Zang W, Liu X, et al. Heterojunction engineering of MoSe2/MoS2 with electronic modulation towards synergetic hydrogen evolution reaction and supercapacitance performance[J]. Chemical Engineering Journal,2019,359:1419-1426. doi: 10.1016/j.cej.2018.11.036
    [23] Ren X P, Ma Q, Ren P Y, et al. Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2018,43:15275-15280. doi: 10.1016/j.ijhydene.2018.06.122
    [24] Li H, Zhu H, Li C, et al. S-doping induced phase engineering of MoSe2 for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2022,47:30371-30377. doi: 10.1016/j.ijhydene.2022.07.008
    [25] Luo H, Gao H, Zhang X, et al. Caterpillar-like 3D graphene nanoscrolls@CNTs hybrids decorated with Co-doped MoSe2 nanosheets for electrocatalytic hydrogen evolution[J]. Journal of Materials Science & Technology,2023,136:43-53.
    [26] Dogra N, Agrawal Pathak P S, et al. Hydrothermally synthesized MoSe2/ZnO composite with enhanced hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48: 26210-26220 DOI: org/10.1016/j.ijhydene.2023.03.352.
    [27] Wu M, Huang Y, Cheng X, et al. Arrays of ZnSe/MoSe2 nanotubes with electronic modulation as efficient electrocatalysts for hydrogen evolution reaction[J]. Advanced Materials Interfaces,2017,4:1700948. doi: 10.1002/admi.201700948
    [28] Sun Z, Lin L, Yuan M, et al. Mott-Schottky heterostructure induce the interfacial electron redistribution of MoS2 for boosting pH-universal hydrogen evolution with Pt-like activity[J]. Nano Energy,2022,101:107563. doi: 10.1016/j.nanoen.2022.107563
    [29] Xu D, Zhang S, Chen J, et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts[J]. Chemical Reviews,2022,123:1-30.
    [30] Xue Z H, Su H, Yu Q Y, et al. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range[J]. Advanced Energy Materials,2017,7:1602355. doi: 10.1002/aenm.201602355
    [31] Chen J, Zheng J, He W, et al. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction[J]. Nano Research, 2023, 16: 4603–4611
    [32] Li T, Yin J, Sun D, et al. Manipulation of Mott-Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting[J]. Small,2022,18:2106592. doi: 10.1002/smll.202106592
    [33] Z. Hong, Z. Xu, Z. Wu, et al. Construction of core-shell Co-NC@W2N Schottky heterojunctions for high-efficiency hydrogen evolution reaction[J]. Applied Surface Science,2023,608:155159. doi: 10.1016/j.apsusc.2022.155159
    [34] Shao Z, Wu L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36:219-226. doi: 10.1016/S1872-5805(21)60015-X
    [35] Setayeshgar S, Karimipour M, Molaei M, et al. Synthesis of scalable 1T/2H MoSe2 nanosheets with a new source of Se in basic media and study of their HER activity[J]. International Journal of Hydrogen Energy,2020,45:6090-6101. doi: 10.1016/j.ijhydene.2019.12.102
    [36] Xiao W, Bukhvalov D, Zou Z, et al. Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe2 nanosheets for the hydrogen evolution reaction: A combined experimental and theoretical study[J]. ChemSusChem,2019,12:5015-5022. doi: 10.1002/cssc.201902149
    [37] Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Optics Express,2013,21:4908-4916. doi: 10.1364/OE.21.004908
    [38] Jiang M, Zhang J, Wu M, et al. Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 117 nm for efficient hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2016,4:14949-14953. doi: 10.1039/C6TA07020E
    [39] Tan C, Zhao W, Chaturvedi A, et al. Preparation of single-layer MoS2xSe2(1-x) and MoxW1-xS2 nanosheets with high-concentration metallic 1T phase[J]. Small,2016,12:1866-1874. doi: 10.1002/smll.201600014
    [40] Inta H R, Ghosh S, Mondal A, et al. Ni0.85Se/MoSe2 interfacial structure: An efficient electrocatalyst for alkaline hydrogen evolution reaction[J]. ACS Applied Energy Materials,2021,4:2828-2837. doi: 10.1021/acsaem.1c00125
    [41] Deng S, Zhong Y, Zeng Y, et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction[J]. Advanced Materials,2017,29:1700748. doi: 10.1002/adma.201700748
    [42] Sun M, Yun S, Dang J, et al. 1D/3D rambutan-like Mott-Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction[J]. Chemical Engineering Journal,2023,458:141301. doi: 10.1016/j.cej.2023.141301
    [43] Wang C, Li Y, Gu C, et al. Active Co@CoO core/shell nanowire arrays as efficient electrocatalysts for hydrogen evolution reaction[J]. Chemical Engineering Journal,2022,429:132226. doi: 10.1016/j.cej.2021.132226
    [44] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133:7296-7299. doi: 10.1021/ja201269b
    [45] X. Wang, G. Zhan, Y. Wang, et al. Engineering core–shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott-Schottky electrocatalysts in neutral rechargeable Zn-Air batteries[J]. Journal of Energy Chemistry,2022,68:113-123.
    [46] Li W, Cheng G, Peng S, et al. Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides[J]. Chemical Engineering Journal,2022,430:132699. doi: 10.1016/j.cej.2021.132699
  • -20230605Supporting Information.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  68
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-22
  • 录用日期:  2023-09-28
  • 修回日期:  2023-09-27
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回