调节碳纳米管膜的亲水性促进锌表面-界面沉积行为转变以实现无枝晶锌阳极

Surface-Interface Zn deposition transformation by hydrophilicity regulation of carbon nanotubes film for a dendrite-free Zn anode

  • 摘要: 水系锌离子电池凭借其高安全性、良好的成本效益以及环境友好的特性,被视为大规模储能领域极具潜力的候选者之一。然而,锌阳极表面不可控的枝晶生长以及相关副反应降低了电池的稳定性。本文通过化学气相沉积法并结合在空气中的热处理,制备了空气氧化碳纳米管(O-CNT)薄膜,并将其作为锌箔的保护层以抑制枝晶的生长。空气氧化调节了薄膜的亲水性,促进了锌沉积在薄膜与阳极之间的界面,而非薄膜的表面。同时,O-CNT薄膜的导电多孔结构能够均匀Zn2+流和锌箔表面电场,从而实现锌的均匀沉积。O-CNT@Zn对称电池的循环稳定性得到显著增强,在1 mA cm−2的电流密度下,寿命超过3000小时,即便在5 mA cm−2的高电流密度下,寿命也超过2000小时。此外,O-CNT@Zn || MnVOH全电池的倍率性能优于Zn || MnVOH全电池,在8 A g−1的电流密度下,具有194 mAh g−1的高放电容量。在长期循环测试中,O-CNT@Zn || MnVOH全电池在5 A g−1的电流密度下历经2000次循环后,容量保持率达58.8%。

     

    Abstract: Aqueous zinc ion batteries are regarded as one of the most promising candidates for large-scale energy storage due to their high safety, cost-effectiveness, and environmental friendliness. However, the uncontrolled dendrite growth and side reactions of zinc anode compromise the stability of the batteries. Herein, an air-oxidized carbon nanotube (O-CNT) film is synthesized by chemical vapor deposition followed by a heat treatment in the air, then adopted as the protective layer to suppress the dendrite growth. The hydrophilicity regulation of the O-CNT film resulting from air oxidation facilitates the interface zinc deposition between the film and the anode instead of surface deposition on the film. Meanwhile, the conductive porous structure of the O-CNT film homogenizes the Zn2+ flux and electric field on the surface of Zn foil, leading to uniform deposition of Zn. As a result, the O-CNT@Zn symmetric cell shows a significantly enhanced cycle stability with a lifespan of more than 3000 hours at 1 mA cm−2 and a lifespan of more than 2000 hours even under a high current density of 5 mA cm−2. Moreover, the O-CNT@Zn || MnVOH full cell demonstrates better rate performance compared to Zn || MnVOH cell, achieving a high discharge capacity of 194 mAh g−1 at a current density of 8 A g−1. In the long-term cycling test, the O-CNT@Zn || MnVOH full cell exhibits a capacity retention of 58.8% after 2000 cycles at the current density of 5 A·g−1.

     

/

返回文章
返回