留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠离子电池负极用高性能沥青基富硫炭材料

贺磊 孙钰仁 王春雷 郭宏毅 郭永强 李晨 周颖

贺磊, 孙钰仁, 王春雷, 郭宏毅, 郭永强, 李晨, 周颖. 钠离子电池负极用高性能沥青基富硫炭材料[J]. 新型炭材料, 2020, 35(4): 420-427. doi: 10.1016/S1872-5805(20)60499-1
引用本文: 贺磊, 孙钰仁, 王春雷, 郭宏毅, 郭永强, 李晨, 周颖. 钠离子电池负极用高性能沥青基富硫炭材料[J]. 新型炭材料, 2020, 35(4): 420-427. doi: 10.1016/S1872-5805(20)60499-1
HE Lei, SUN Yu-ren, WANG Chun-lei, GUO Hong-yi, GUO Yong-qiang, LI Chen, ZHOU Ying. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. NEW CARBON MATERIALS, 2020, 35(4): 420-427. doi: 10.1016/S1872-5805(20)60499-1
Citation: HE Lei, SUN Yu-ren, WANG Chun-lei, GUO Hong-yi, GUO Yong-qiang, LI Chen, ZHOU Ying. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. NEW CARBON MATERIALS, 2020, 35(4): 420-427. doi: 10.1016/S1872-5805(20)60499-1

钠离子电池负极用高性能沥青基富硫炭材料

doi: 10.1016/S1872-5805(20)60499-1
基金项目: 国家自然科学基金(21576047,U1510204,21776040).
详细信息
    作者简介:

    贺磊,硕士研究生.E-mail:hl_helei@126.com

    通讯作者:

    周颖,教授.E-mail:zhouying.dlut@dlut.edu.cn

  • 中图分类号: TQ127.1+1

High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries

Funds: National Natural Science Foundation of China (21576047, U1510204, 21776040).
  • 摘要: 以中温煤沥青为碳源,升华硫为硫源,经低温和高温两步热处理,成功制备了具有较高硫含量的硫掺杂沥青基炭材料。探究了炭化温度对材料组成、结构及电化学性能的影响。结果表明,随着炭化温度的升高,材料中硫含量明显减少;硫流失的同时,带来炭结构的变化,材料的比表面积和层间距逐渐增大。其中800℃炭化的材料(SC-800)硫含量达到20.19 wt.%,层间距为0.368 nm,在0.1 A/g的电流密度下,储钠首次可逆容量高达482.8 mAh/g;在0.5 A/g和5 A/g的电流密度下,循环500圈和1 000圈后,仍然保持245.9和103.7 mAh/g的比容量。SC-800优异的电化学性能归因于高硫含量、较大的层间距和合适的孔道结构。
  • Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114(23):11636-11682.
    Ren D Z, Huang H, Qi J G, et al. One-pot template-free cross-linking synthesis of SiOx-SnO2@C hollow spheres as a high volumetric capacity anode for lithium-ion batteries[J]. Energy Technology, 2020, 2000314, 10.1002/ente.202000314.
    Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Lett, 2015, 15(9):5888-5892.
    Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State lonics, 1988, 28:1172-1175.
    Doeff M M, Ma Y P, Visco S J, et al. Electrochemical insertion of sodium into carbon[J]. J Electrochem Soc, 1993, 140(12):169-170.
    董伟,杨绍斌,沈丁,等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3):227-233. (DONG Wei, YANG Shao-bin, SHEN Ding, et al. Performance of pitch and glucose pyrocarbons for reversible sodium storage[J]. New Carbon Materials, 2017, 32(3):227-233.)
    Liu P, Li Y M, Hu Y S, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(34):13046-13052.
    Wang Q Q, Zhu X S, Liu Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127:658-666.
    Wahid M, Puthusseri D, Gawli Y, et al. Hard carbons for sodium-ion battery anodes:Synthetic strategies, material properties, and storage mechanisms[J]. ChemSusChem, 2018, 11:506-526.
    Qi Y R, Lu Y X, Ding F X, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angew Chem Int Ed Engl, 2019, 58(13):4361-4365.
    Wang H G, Wu Z, Meng F L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem, 2013, 6(1):56-60.
    Xu J T, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Adv Mater, 2015, 27(12):2042-2048.
    Yun Y S, Le V D, Kim H, et al. Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries[J]. Journal of Power Sources, 2014, 262:79-85.
    Yang J Q, Zhou X L, Wu D H, et al. S-Doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Adv Mater, 2016, 29(6):1604108.
    Qie L, Chen W M, Xiong X Q, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Adv Sci, 2015, 2(12):1500195.
    Wang Z H, Qie L, Yuan L X, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon, 2013, 55:328-334.
    Hao M Y, Xiao N, Wang Y W, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology, 2018, 177:328-335.
    Hou H S, Shao L D, Zhang Y, et al. Large-area carbon nanosheets doped with phosphorus:A high-performance anode material for sodium-ion batteries[J]. Adv Sci, 2017, 4(1):1600243.
    Syroezhko A M, Begak O Y, Fedorov V V, et al. Modification of paving asphalts with sulfur[J]. Chemistry of Fossil Fuel, 2003, 76(3):491-496.
    Zhao G G, Zou G Q, Hou H S, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. Journal of Materials Chemistry A, 2017, 5(46):24353-24360.
    ZHANG Hong-wei, LU Jia-min, YANG Le, et al. N,S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries[J]. New Carbon Materials, 2017, 32(6):517-526.
    Li W, Zhou M, Li H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science, 2015, 8(10):2916-2921.
    Brauman S K. Chemiluminescence studies of the low temperature thermooxidation of poly(phenylene sulfide)[J]. Journal of Polymer Science:Part A:Polymer Chemistry, 1989, 27:3285-3302.
    Chen W Z, Shi J J, Zhu T S, et al. Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability[J]. Electrochimica Acta, 2015, 177:327-334.
    Hong Z S, Zhen Y C, Ruan Y R, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Adv Mater, 2018, 30(29):1802035.
    Deng X, Xie K Y, Li L, et al. Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries[J]. Carbon, 2016, 107:67-73.
    Zou G Q, Hou H S, Zhao G G, et al. Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries[J]. Green Chemistry, 2017, 19(19):4622-4632.
    Zou G Q, Wang C, Hou H S, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries[J]. Small, 2017, 13(31):1700762.
    Wang X L, Li G, Hassan F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy, 2015, 15:746-754.
    Xu D F, Chen C J, Xie J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6):1501929.
    Zhu Y J, Wang C S. Galvanostatic intermittent titration technique for phase-transformation Electrodes[J]. J Phys Chem C, 2010, 114:2830-2841.
  • 加载中
图(1)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  32
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 修回日期:  2020-07-05
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回