留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulating the radial structure of polyacrylonitrile fibers during pre-oxidation and its effect on the mechanical properties of the resulting carbon fibers

WANG Yun-feng WANG Yi-wei XU Liang-hua WANG Yu

王云峰, 王一苇, 徐樑华, 王宇. PAN预氧结构径向调控及其对炭纤维性能的影响[J]. 新型炭材料, 2021, 36(4): 827-834. doi: 10.1016/S1872-5805(20)60516-9
引用本文: 王云峰, 王一苇, 徐樑华, 王宇. PAN预氧结构径向调控及其对炭纤维性能的影响[J]. 新型炭材料, 2021, 36(4): 827-834. doi: 10.1016/S1872-5805(20)60516-9
WANG Yun-feng, WANG Yi-wei, XU Liang-hua, WANG Yu. Regulating the radial structure of polyacrylonitrile fibers during pre-oxidation and its effect on the mechanical properties of the resulting carbon fibers[J]. NEW CARBON MATERIALS, 2021, 36(4): 827-834. doi: 10.1016/S1872-5805(20)60516-9
Citation: WANG Yun-feng, WANG Yi-wei, XU Liang-hua, WANG Yu. Regulating the radial structure of polyacrylonitrile fibers during pre-oxidation and its effect on the mechanical properties of the resulting carbon fibers[J]. NEW CARBON MATERIALS, 2021, 36(4): 827-834. doi: 10.1016/S1872-5805(20)60516-9

PAN预氧结构径向调控及其对炭纤维性能的影响

doi: 10.1016/S1872-5805(20)60516-9
基金项目: 装备预研教育部联合基金(6141A02033231,6141A02033223);国防基础科研计划项目(JCKY2018110C139);中央高校基本业务费项目(JD2012)
详细信息
    通讯作者:

    徐樑华,教授. E-mail:xulh@mail.buct.edu.cn

    王 宇,副教授,博士. E-mail:wangy@mail.buct.edu.cn

  • 中图分类号: TQ 342+.74

Regulating the radial structure of polyacrylonitrile fibers during pre-oxidation and its effect on the mechanical properties of the resulting carbon fibers

Funds: The Joint Fund of the Ministry of Education for Pre-research (6141A02033231 and 6141A02033223), the Fundamental Research Funds for the Central Universities (JD2012) and the Basic Research Plan (JCKY2018110C139)
More Information
  • 摘要: 预氧纤维结构及其分布直接影响炭纤维的性能,优化预氧结构径向分布,构建预氧结构与炭纤维力学性能的关系,对制备高性能炭纤维具有指导意义。本文采用固体核磁、光学显微镜、热失重等表征方法,通过温度控制预氧化反应速率,研究预氧化反应速率对纤维结构和径向分布及炭纤维性能的影响。结果表明,整体提高预氧化反应速率,在促进预氧结构向纤维更深区域扩展的同时,也导致含氧结构增加较多,热稳定性降低,影响炭纤维的性能;而提高预氧化初期反应速率,有效改善预氧结构径向分布的同时纤维含氧结构增加较少,热稳定性提高,最终炭纤维的石墨化程度和致密性较高,力学性能显著提升,获得一种具有高强中模特征、直径相对较大的炭纤维。
  • FIG. 787.  FIG. 787.

    FIG. 787.. 

    Figure  1.  Schematic diagram of the measuring positions of the optical density of a pre-oxidized fiber.

    Figure  2.  Radial distribution of the pre-oxidation degree in sample 1 fibers: (a) Micrograph of the fiber cross section and (b) radial optical density distribution of the fiber cross section.

    Figure  3.  Micrographs of the cross sections of pre-oxidized fibers prepared with different pre-oxidation rates: (a) Sample 1, (b) 2 and (c) 3.

    Figure  4.  Radial optical density distribution of pre-oxidized fibers subjected to different pre-oxidation reaction rates.

    Figure  5.  Effect of the pre-oxidation reaction rate on thermal stability of pre-oxidized fibers.

    Figure  6.  Radial distribution of the pre-oxidation degree in fibers: (a) Micrograph of the fiber cross section of sample 4 and (b) optical density distribution of the fiber cross section for sample 1 (black) and 4 (red).

    Figure  7.  Effect of the initial reaction rate on the thermal stability of pre-oxidized fibers.

    Figure  8.  Radial distribution of the g values of carbon fiber samples determined from Raman spectra.

    Table  1.   Pre-oxidation furnace temperatures (°C) used to prepare samples 1-4.

    Sample123456
    1#200215238255260265
    2#200213235250255260
    3#200220243255265270
    4#210225238255260265
    Note: processing time: 1 h, atmosphere: air.
    下载: 导出CSV

    Table  2.   13C ssNMR analysis results for pre-oxidized fibers subjected to different pre-oxidation reaction rates.

    SampleC=C 115×10−6C=CH 139×10−6C=N 153×10−6—C=O 176×10−6RCI(%)Gh(%)RC=O/C=N(%)RC=O/C=N(%)
    1#14.218.8620.414.6155.365.322.60.0
    2#14.248.8420.114.5154.565.022.2-0.4
    3#15.609.6921.105.2156.778.024.7+2.1
    下载: 导出CSV

    Table  3.   Optical density analysis results of PAN fibers pre-oxidized at different reaction rates.

    SampleOD0OD±1OD±2OD±3OD±4OD±5ODm
    1#0.5550.5460.5310.5050.5000.4940.508
    2#0.5590.5530.5400.5250.5190.5120.522
    3#0.5430.5300.4780.4180.4120.4080.436
    下载: 导出CSV

    Table  4.   Characteristic structural parameters of PAN fibers pre-oxidized at different initial reaction rates.

    SampleRCI
    (%)
    Gh
    (%)
    RC=O/C=N
    (%)
    RC=O/C=N
    (%)
    ODm
    1#55.365.322.60.00.508
    4#56.669.822.7+0.10.492
    下载: 导出CSV

    Table  5.   Structures of different pre-oxidized fibers and properties of corresponding carbon fibers.

    SamplesStructures of pre-oxidized fibers Properties of carbon fibers
    RCI(%)Gh(%)RC=O/C=N(%)Linear density(g·m−1)ρ(g·m−3)σ(GPa)E(GPa)
    1#55.365.322.60.06971.73995.28273
    2#54.565.022.20.06821.75245.02268
    3#56.778.024.70.07171.73845.21265
    4#56.669.822.70.07001.75495.50279
    下载: 导出CSV
  • [1] Zhao Y H, Li Q F, Wang J W, et al. Preparation and properties of carbon fiber/polyether polyurethane composites[J]. New Carbon Materials,2014,29(06):454-460.
    [2] Zhang J, Chuai X B. Development and application status of carbon fiber[J]. Chemical Management,2017,23:60.
    [3] Yang Y H, Pan Y X, Feng Z H, et al. Evaluation of aerospace carbon fibers[J]. New Carbon Materials,2014,29(03):161-168.
    [4] Wu S, Gao A J, Wang Y, et al. Modification of polyacrylonitrile stabilized fibers via post-thermal treatment in nitrogen prior to carbonization and its effect on the structure of carbon fibers[J]. Fibers and Polymers,2018,53(11):8627-8638.
    [5] Wen Y F, Cao X, Yang Y G, et al. Carbonization of pre-oxidized polyacrylonitrile fibers[J]. New Carbon Materials,2008(02):121-126.
    [6] Zhang X. Pre-oxidized structure regulation of PAN fiber and the influence on high temperature thermal cracking and restructuring behavior[D]. Master Degree, Beijing University of Chemical Technology, 2015.
    [7] Xue Y, Liu J, Lian F, et al. Effect of the oxygen-induced modification of polyacrylonitrile fibers during thermal-oxidative stabilization on the radial microcrystalline structure of the resulting carbon fibers[J]. Polymer Degradation and Stability,2013,98(11):2259-2267. doi: 10.1016/j.polymdegradstab.2013.08.016
    [8] Ruan R Y, Ye L W, Feng Hai, et al. High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties[J]. New Carbon Materials,2020, 35 (3): 295-306
    [9] Liu J, Li J, Wang L, et al. The evolution of the core/shell structure of polyacrylonitrile fibers during peroxidation[J]. New Carbon Materials,2008,23(02):177-184.
    [10] Nunna S, Naebe M, Hameed N, et al. Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization: An overview[J]. Polymer Degradation and Stability,2017,136:20-30. doi: 10.1016/j.polymdegradstab.2016.12.007
    [11] Nunna S, Naebe M, Hameed N, et al. Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres[J]. Polymer Degradation and Stability,2016,125:105-114. doi: 10.1016/j.polymdegradstab.2016.01.008
    [12] Nunna S, Creighton C, Bronwyn L, et al. The effect of thermally induced chemical transformations on the structure and properties of carbon fiber precursors[J]. Journal of Materials Chemistry A,2017,5(16):7372-7378. doi: 10.1039/C7TA01022B
    [13] Zhao C. The research of dimensional-effect on the thermal reaction proceeding of PAN fibers[D]. PhD, Beijing University of Chemical Technology, 2012.
    [14] Wang J, Hu L, Yang C, et al. Effects of oxygen content in the atmosphere on thermal oxidative stabilization of polyacrylonitrile fibers[J]. Royal Society of Chemistry,2016,6(77):73404-73411.
    [15] Kong L, Liu H, Cao W, et al. PAN fiber diameter effect on the structure of PAN-based carbon fibers[J]. Fibers and Polymers,2014,15(12):2480-2488. doi: 10.1007/s12221-014-2480-1
    [16] Nunna S, Creighton C, Hameed N, et al. Radial structure and property relationship in the thermal stabilization of PAN precursor fibers[J]. Polymer Testing,2017,59:203-211. doi: 10.1016/j.polymertesting.2017.02.006
    [17] Wu S. Formation and orientation efficiency of cyclized structure of PAN-based carbon fibers under thermal stretching[D]. PhD, Beijing University of Chemical Technology, 2018.
    [18] Zhong S, Xu F, Lei Shuai, et al. Optical density method of radial structure of PAN-based pro-oxidized fibers[J]. Journal of Materials Engineering,2017,45(02):65-71.
    [19] Vollebregt S, Ishihara R, Tichelaar F D, et al. Influence of the grow temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers[J]. Carbon,2012,50(10):3542-3554. doi: 10.1016/j.carbon.2012.03.026
    [20] Yuan J S. The relevant research on pre-oxidation process and aggregation structure of PAN fibers[D]. Master Degree, Beijing University of Chemical Technology, 2013.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  100
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-10-11
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回