留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and application of hollow carbon spheres for electric double-layer capacitors

XU Kuang-liang LIU Jing YAN Zhao-xiong JIN Mei XU Zhi-hua

XU Kuang-liang, LIU Jing, YAN Zhao-xiong, JIN Mei, XU Zhi-hua. Synthesis and application of hollow carbon spheres for electric double-layer capacitors[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(20)60517-0
Citation: XU Kuang-liang, LIU Jing, YAN Zhao-xiong, JIN Mei, XU Zhi-hua. Synthesis and application of hollow carbon spheres for electric double-layer capacitors[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(20)60517-0

doi: 10.1016/S1872-5805(20)60517-0

Synthesis and application of hollow carbon spheres for electric double-layer capacitors

Funds: National Natural Science Foundation of China (21871111); Excellent Youth Foundation of Hubei Province of China (2019CFA078)
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The overall conception of this work related to the synthesis and electrochemical performance of HCSs in EDLCs[24,29-33]

    Figure  2.  (a) TEM image of amine-functionalized silica colloid and schematic illustration of the formation process of the carbon hollow-spheres, (b) TEM image of porous HCSs, (c) plots of potential versus time at different current densities and (d) the variation of specific capacitance with 1000 charge-discharge cycles at the current density of 5 A g−1 and the corresponding coulomb efficiency for the porous HCS electrodes[54]

    Figure  3.  (a) A schematic illustration depicting the synthesis route for N- and O-doped HCSs, (b) TEM image of HCSs-700, (c) GCD curves at the current density of 1 A g−1 and (d) CV curves at the scan rate of 50 mV s−1 of HCSs prepared at different carbonization temperatures[30]

    Figure  4.  (a) A schematic illustration of the synthesis of nitrogen-rich porous carbon spheres, (b) TEM image of NPC800, (c) CV curves at the scan rate of 5 mV s−1 and (d) GCD curves at the current density of 0.5 A g−1 of NPC prepared at different carbonization temperatures[31,79]

    Figure  5.  (a) A schematic illustration of the one-pot, surfactant-free synthesis of mesoporous carbon hollow spheres; (b) TEM image of MCHS, (c) GCD curves of MCHS and (d) cycling stability of MCHS at the current density of 10 A g−1[24].

    Figure  6.  (a) Normalized capacitance versus the average pore size for different carbon materials in Et4NBF4/AN electrolyte, (b−d) drawings of the distances between the solvated ions residing in pores and pore walls (b) greater than 2 nm, (c) between 1 and 2 nm, and (d) less than 1 nm[107].

    Figure  7.  Normalized capacitance versus average pore size for different carbon materials in 1 M H2SO4 electrolyte[111]

    Figure  8.  Schematic of functional groups of N-doped HCSs[47]

    Table  1.   A comparison of electrochemical performance of HCSs prepared by different methods

    HCS sampleSynthetic methodCarbon precursorCarbonization temperature
    (°C)
    Specific surface area(m2 g−1)Pore size
    (nm)
    Current density
    (A g−1)
    Specific capacitance
    (F g−1)
    ElectrolyteRef.
    Surface-openings HCSHard templatingResorcinol/
    formaldehyde
    800670.04.18 and 12.55 a0.1272.21 M H2SO4[15]
    HCSHard templatingResorcinol/
    formaldehyde
    800555.63.87 a0.1210.71 M H2SO4[15]
    N-P-HCMsHard templatingMelamine/
    formaldehyde
    8006492.6 and 3.7 a0.52006 M KOH[25]
    N-HPCSHard templatingDopamine700674.918 ~ 3012576 M KOH[29]
    HPCSHard templatingFurfuryl alcohol90024892 ~ 40.21676 M KOH[33]
    HCSSgHard templatingGlucose8009340.6 ~ 60.23862 M KOH[39]
    HPCSHard templatingFurfuryl alcohol8006691.2 ~ 3.01240.06 M KOH[40]
    Activated HPCSsHard templatingFurfuryl alcohol80012901.5 ~ 3.01303.96 M KOH[40]
    HCMSCHard templatingPhenol/
    formaldehyde
    90016673.46 a0.31621 M Et4NBF4/AN[44]
    MHCSHard templatingC2H48007701.8 ~ 6.90.2991 M H2SO4[45]
    N-PHCSHard templatingPolyaniline6002134.5 b0.52136 M KOH[47]
    HMCSsHard templatingPolystyrene60013214.6 a0.51576 M KOH[48]
    HMCSsHard templatingCarbonaceous gas80011892.7 a0.21806 M KOH[49]
    Activated HCSsHard templatingPolypyrrole9009230.55 ~ 150.25356 M KOH[51]
    N-PCSHard templatingPolyacrylamide6506480.5 ~ 100.5194.76 M KOH[52]
    N-HCSHard templatingResorcinol and hexamethylenetetramine6004051 ~ 4.50.51206 M KOH[53]
    CHSsHard templatingGlucose80065840 a0.52706 M KOH[54]
    HCSsSoft templatingPoly(o-phenylenediamine)6001453.06 b6 M KOH[30]
    HCSsSoft templatingPoly(o-phenylenediamine)7003553.83 b0.52106 M KOH[30]
    HCSsSoft templatingPoly(o-phenylenediamine)8002121.19 b6 M KOH[30]
    HCSsSoft templatingPoly(styrene-co-divinylbenzene)7008050.7 a0.55612 M KOH[57]
    PCSSoft templatingGlucose80016103.5 b0.5801 M TEA-BF4/AN[70]
    PCSSoft templatingGlucose80016103.5 b0.52196 M KOH[70]
    N-PCSTemplate-freePorous organic frameworks80052540 a0.52305 M KOH[31]
    HCSTemplate-freeCorn starch800517.462 ~ 101265.46 M KOH[32]
    N-HCSTemplate-freeResorcinol/formaldehyde80094611966 M KOH[73]
    HCSTemplate-freeSucrose110011062 a0.11126 M KOH[76]
    N-HCSTemplate-free3-aminophenol/
    formaldehyde
    8009112.7 a11946 M KOH[128]
    MCHSModified Stöber methodResorcinol/
    formaldehyde
    70015827.5 a1310.46 M KOH[24]
    N-HMCSsModified Stöber methodResorcinol/
    formaldehyde
    60011585.0 b11596 M KOH[90]
    Yolk–shell CSModified Stöber methodResorcinol/
    formaldehyde
    8006165.7 a0.53306 M KOH[91]
    N-HCSModified Stöber methodPolystyrene/
    polyaniline
    800953.84.1 a0.5436.56 M KOH[92]
    HMCSsModified Stöber methodResorcinol/
    formaldehyde
    80014252.1 a0.53526 M KOH[93]
    N-HMCSsModified Stöber methodResorcinol/
    formaldehyde
    80020012.4 a13001 M H2SO4[105]
    N-HMCSsModified Stöber method3-aminophenol/
    formaldehyde
    60010063 a11706 M KOH[129]
    Note:a pore width at the maximum of the pore size distribution;b average pore size
    下载: 导出CSV
  • [1] Yan W, Shi Z Q, Yi H, et al. Supercapacitor Devices Based on Graphene Materials[J]. Journal of Physical Chemistry C,2009,113(30):13103-13107. doi: 10.1021/jp902214f
    [2] Burke A. Ultracapacitors: Why, How, and Where Is the Technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [3] Mefford J T, Hardin W G, Dai S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes[J]. Nature Materials,2014,13(7):726-732. doi: 10.1038/nmat4000
    [4] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [5] Simon P, Gogotsi Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems[J]. Accounts of Chemical Research,2013,46(5):1094-1103. doi: 10.1021/ar200306b
    [6] Gopi C V V M, Kim H. Design of Supercapacitor for Electric and Hybrid Vehicles: Supercapacitor[C]. 2018: 1-3.
    [7] Moreno J, Ortúzar M E, Dixon J W. Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks[J]. IEEE Transactions on Industrial Electronics,2006,53(2):614-623. doi: 10.1109/TIE.2006.870880
    [8] Fares A, Klumpner C, Rashed M. Design Considerations to Optimise Supercapacitor-based Energy Storage Systems for Aerospace Applications[C]. 2018: 1-8.
    [9] Peng C, Zhang S W, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Progress in Natural Science,2008,18(7):777-788. doi: 10.1016/j.pnsc.2008.03.002
    [10] Yu J L, Lu W B, Pei S P, et al. Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films[J]. ACS Nano,2016,10(5):5204-5211. doi: 10.1021/acsnano.6b00752
    [11] Afzal A, Abuilaiwi F A, Habib A, et al. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges[J]. Journal of Power Sources,2017,352:174-186. doi: 10.1016/j.jpowsour.2017.03.128
    [12] Tian X, Ma H R, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors[J]. Journal of Power Sources,2017,359:88-96. doi: 10.1016/j.jpowsour.2017.05.054
    [13] Dai S G, Liu Z, Zhao B, et al. A high-performance supercapacitor electrode based on N-doped porous graphene[J]. Journal of Power Sources,2018,387:43-48. doi: 10.1016/j.jpowsour.2018.03.055
    [14] Xu Z H, Yu J G, Liu G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution[J]. Sensors and Actuators B: Chemical,2013,181:209-214. doi: 10.1016/j.snb.2013.01.043
    [15] Wang H R, Zhou H W, Gao M, et al. Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes[J]. Electrochimica Acta,2019,298:552-560. doi: 10.1016/j.electacta.2018.12.070
    [16] Liu H, Guo H, Liu B H, et al. Few-Layer MoSe2 Nanosheets with Expanded (002) Planes Confined in Hollow Carbon Nanospheres for Ultrahigh-Performance Na-Ion Batteries[J]. Advanced Functional Materials,2018,28(19):1707480. doi: 10.1002/adfm.201707480
    [17] Sun B, Kretschmer K, Xie X Q, et al. Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries[J]. Advanced Materials,2017,29(48):1606816. doi: 10.1002/adma.201606816
    [18] Xu C P, Niu D C, Zheng N, et al. Facile Synthesis of Nitrogen-Doped Double-Shelled Hollow Mesoporous Carbon Nanospheres as High-Performance Anode Materials for Lithium Ion Batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):5999-6007.
    [19] Natarajan S, Bajaj H C, Aravindan V. Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage[J]. Journal of Materials Chemistry A,2019,7(7):3244-3252. doi: 10.1039/C8TA11521D
    [20] Wu F, Li J, Su Y F, et al. Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium–Sulfur Batteries[J]. Nano Letters,2016,16(9):5488-5494. doi: 10.1021/acs.nanolett.6b01981
    [21] Li Y, Qi J W, Li J S, et al. Nitrogen-Doped Hollow Mesoporous Carbon Spheres for Efficient Water Desalination by Capacitive Deionization[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6635-6644.
    [22] Gu D G, Ma R G, Zhou Y, et al. Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction[J]. ACS Sustainable Chemistry & Engineering,2017,5(11):11105-11116.
    [23] Fu Y S, Zhou Y, Peng Q, et al. Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors[J]. Journal of Power Sources,2018,402:43-52. doi: 10.1016/j.jpowsour.2018.09.022
    [24] Zhang H W, Noonan O, Huang X D, et al. Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes[J]. ACS Nano,2016,10(4):4579-4586. doi: 10.1021/acsnano.6b00723
    [25] Zhang N, Liu F, Xu S D, et al. Nitrogen–phosphorus co-doped hollow carbon microspheres with hierarchical micro–meso–macroporous shells as efficient electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2017,5(43):22631-22640. doi: 10.1039/C7TA07488C
    [26] Qiu D P, Gao A, Xie Z Y, et al. Homologous Hierarchical Porous Hollow Carbon Spheres Anode and Bowls Cathode Enabling High-Energy Sodium-Ion Hybrid Capacitors[J]. ACS Applied Materials & Interfaces,2018,10(51):44483-44493.
    [27] Cai T H, Xing W, Liu Z, et al. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres[J]. Carbon,2015,86:235-244. doi: 10.1016/j.carbon.2015.01.032
    [28] Pan H, Li J Y, Feng Y P. Carbon Nanotubes for Supercapacitor[J]. Nanoscale Research Letters,2010,5:654-668. doi: 10.1007/s11671-009-9508-2
    [29] Fang M M, Chen Z M, Tian Q G, et al. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance[J]. Applied Surface Science,2017,425:69-76. doi: 10.1016/j.apsusc.2017.06.279
    [30] Yuan C Q, Liu X H, Jia M Y, et al. Facile Preparation of N- and O- Doped Hollow Carbon Spheres Derived from Poly(o-phenylenediamine) for Supercapacitors[J]. Journal of Materials Chemistry A,2015,3(7):3409-3415. doi: 10.1039/C4TA06411A
    [31] Liu X H, Zhou L, Zhao Y Q, et al. Hollow, Spherical Nitrogen-Rich Porous Carbon Shells Obtained from a Porous Organic Framework for the Supercapacitor[J]. ACS Applied Materials & Interfaces,2013,5(20):10280-10287.
    [32] Zhang Y Q, Jia M M, Gao H Y, et al. Porous hollow carbon spheres: facile fabrication and excellent supercapacitive properties[J]. Electrochimica Acta,2015,184:32-39. doi: 10.1016/j.electacta.2015.10.042
    [33] Zhou M, Lu Y, Chen H M, et al. Excellent durable supercapacitor performance of hierarchical porous carbon spheres with macro hollow cores[J]. Journal of Energy Storage,2018,19:35-40. doi: 10.1016/j.est.2018.07.007
    [34] Chen X C, Kierzek K, Jiang Z W, et al. Synthesis, Growth Mechanism, and Electrochemical Properties of Hollow Mesoporous Carbon Spheres with Controlled Diameter[J]. The Journal of Physical Chemistry C,2011,115(36):17717-17724. doi: 10.1021/jp205257u
    [35] Yang S L, Zhu Y N, Cao C Y, et al. Controllable Synthesis of Multiheteroatoms Co-Doped Hierarchical Porous Carbon Spheres as an Ideal Catalysis Platform[J]. ACS Applied Materials & Interfaces,2018,10(23):19664-19672.
    [36] Li X F, Chi M F, Mahurin S M, et al. Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition[J]. Carbon,2016,101:57-61. doi: 10.1016/j.carbon.2016.01.043
    [37] Liu R, Mahurin S M, Li C, et al. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites[J]. Angewandte Chemie International Edition,2011,50(30):6799-6802. doi: 10.1002/anie.201102070
    [38] Ikeda S, Tachi K, Ng Y H, et al. Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Porous Silica for Fabrication of Hollow Carbon Spheres with Porous Walls[J]. Chemistry of Materials,2007,19(17):4335-4340. doi: 10.1021/cm0702969
    [39] Guo D Y, Chen X A, Fang Z P, et al. Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes[J]. Electrochimica Acta,2015,176:207-214. doi: 10.1016/j.electacta.2015.07.032
    [40] Liu J, Wang X Y, Gao J, et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192. doi: 10.1016/j.electacta.2016.05.217
    [41] Shi X Z, Zhang S, Chen X C, et al. Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors[J]. Journal of Alloys and Compounds,2017,726:466-473. doi: 10.1016/j.jallcom.2017.08.012
    [42] Wenelska K, Ottmann A, Moszynski D, et al. Facile synthesis N-doped hollow carbon spheres from spherical solid silica[J]. Journal of Colloid and Interface Science,2018,511:203-208. doi: 10.1016/j.jcis.2017.10.003
    [43] Ghimire P, Gunathilake C, Wickramaratne N P, et al. Tetraethyl orthosilicate-assisted synthesis of nitrogen-containing porous carbon spheres[J]. Carbon,2017,121:408-417. doi: 10.1016/j.carbon.2017.06.007
    [44] Bhattacharjya D, Kim M S, Bae T S, et al. High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture[J]. Journal of Power Sources,2013,244:799-805. doi: 10.1016/j.jpowsour.2013.01.112
    [45] Chen X C, Kierzek K, Cendrowski K, et al. CVD generated mesoporous hollow carbon spheres as supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396:246-250. doi: 10.1016/j.colsurfa.2012.01.002
    [46] Hu L L, Yang L P, Zhang D, et al. Designed synthesis of SnO2–C hollow microspheres as an anode material for lithium-ion batteries[J]. Chemical Communications,2017,53(81):11189-11192. doi: 10.1039/C7CC05747D
    [47] Han J P, Xu G Y, Ding B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(15):5352-5357. doi: 10.1039/C3TA15271E
    [48] Wang G X, Wang R C, Liu L, et al. Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor[J]. Materials Letters,2017,197:71-74. doi: 10.1016/j.matlet.2017.03.163
    [49] Wang G X, Liang K H, Liu L, et al. Fabrication of monodisperse hollow mesoporous carbon spheres by using “confined nanospace deposition” method for supercapacitor[J]. Journal of Alloys and Compounds,2018,736:35-41. doi: 10.1016/j.jallcom.2017.11.080
    [50] Wang L L, Shao H H, Wang W J, et al. Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141[J]. Nano Energy,2018,44:95-102. doi: 10.1016/j.nanoen.2017.11.055
    [51] Chen Z, Cao R, Ge Y H, et al. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance[J]. Journal of Power Sources,2017,363:356-364. doi: 10.1016/j.jpowsour.2017.07.037
    [52] Chen X Y, Chen C, Zhang Z J, et al. Nitrogen-Doped Porous Carbon Spheres Derived from Polyacrylamide[J]. Industrial & Engineering Chemistry Research,2013,52(34):12025-12031.
    [53] Liu F, Yuan R L, Zhang N, et al. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors[J]. Applied Surface Science,2018,437:271-280. doi: 10.1016/j.apsusc.2017.12.174
    [54] Han Y, Dong X T, Zhang C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material[J]. Journal of Power Sources,2012,211:92-96. doi: 10.1016/j.jpowsour.2012.03.053
    [55] Cheng Y L, Li T H, Fang C Q, et al. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers[J]. Applied Surface Science,2013,282:862-869. doi: 10.1016/j.apsusc.2013.06.072
    [56] Yang Z C, Zhang Y, Kong J H, et al. Hollow Carbon Nanoparticles of Tunable Size and Wall Thickness by Hydrothermal Treatment of α-Cyclodextrin Templated by F127 Block Copolymers[J]. Chemistry of Materials,2013,25(5):704-710. doi: 10.1021/cm303513y
    [57] Chen J, Hong M, Chen J F, et al. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor[J]. Applied Surface Science,2018,443:367-373. doi: 10.1016/j.apsusc.2018.02.052
    [58] Wang T, Zhang P F, Sun Y, et al. New Polymer Colloidal and Carbon Nanospheres: Stabilizing Ultrasmall Metal Nanoparticles for Solvent-Free Catalysis[J]. Chemistry of Materials,2017,29(9):4044-4051. doi: 10.1021/acs.chemmater.7b00710
    [59] Zhang J R, Wang X, Qi G C, et al. A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres[J]. Carbon,2016,96:864-870. doi: 10.1016/j.carbon.2015.10.045
    [60] Wang J, Liu H Y, Diao J Y, et al. Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy[J]. Journal of Materials Chemistry A,2015,3(5):2305-2313. doi: 10.1039/C4TA05820H
    [61] Tang J, Wang J, Shrestha L K, et al. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor[J]. ACS Applied Materials & Interfaces,2017,9(22):18986-18993.
    [62] Xu F, Tang Z W, Huang S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications,2015,6:7221. doi: 10.1038/ncomms8221
    [63] Sun Z C, Bai F, Wu H M, et al. Hydrogen-Bonding-Assisted Self-Assembly: Monodisperse Hollow Nanoparticles Made Easy[J]. Journal of the American Chemical Society,2009,131(38):13594-13595. doi: 10.1021/ja905240w
    [64] Chen D Y, Jiang M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions[J]. Accounts of Chemical Research,2005,38(6):494-502. doi: 10.1021/ar040113d
    [65] Cui J W, Wang Y J, Postma A, et al. Monodisperse Polymer Capsules: Tailoring Size, Shell Thickness, and Hydrophobic Cargo Loading via Emulsion Templating[J]. Advanced Functional Materials,2010,20(10):1625-1631. doi: 10.1002/adfm.201000209
    [66] Wang G H, Sun Q, Zhang R, et al. Weak Acid–Base Interaction Induced Assembly for the Synthesis of Diverse Hollow Nanospheres[J]. Chemistry of Materials,2011,23(20):4537-4542. doi: 10.1021/cm2018168
    [67] Han J, Song G P, Guo R. A Facile Solution Route for Polymeric Hollow Spheres with Controllable Size[J]. Advanced Materials,2006,18:3140-3144. doi: 10.1002/adma.200600282
    [68] Sun X M, Li Y D. Hollow carbonaceous capsules from glucose solution[J]. Journal of Colloid and Interface Science,2005,291(1):7-12. doi: 10.1016/j.jcis.2005.04.101
    [69] Li Z S, Li D H, Liu Z H, et al. Mesoporous carbon microspheres with high capacitive performances for supercapacitors[J]. Electrochimica Acta,2015,158:237-245. doi: 10.1016/j.electacta.2015.01.189
    [70] Tang Z H, Jiang S, Shen S L, et al. The preparation of porous carbon spheres with hierarchical pore structure and the application for high-performance supercapacitors[J]. Journal of Materials Science,2018,53(19):13987-14000. doi: 10.1007/s10853-018-2584-x
    [71] Fan Y, Yang X, Zhu B, et al. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors[J]. Journal of Power Sources,2014,268:584-590. doi: 10.1016/j.jpowsour.2014.06.100
    [72] Yang B, Wang C Y, Zheng J M, et al. Preparation of Hollow Carbon Spheres with Large Size and High Specific Surface Area from Phenolic Resin[J]. Advanced Materials Research,2012,557-559:932-936. doi: 10.4028/www.scientific.net/AMR.557-559.932
    [73] Zhang L L, Liu L, Liu M, et al. Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method[J]. Journal of Alloys and Compounds,2019,778:294-301. doi: 10.1016/j.jallcom.2018.11.169
    [74] Du W, Wang X N, Zhan J, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:907-915. doi: 10.1016/j.electacta.2018.11.074
    [75] Kim S, Shibata E, Sergiienko R, et al. Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems[J]. Carbon,2008,46(12):1523-1529. doi: 10.1016/j.carbon.2008.05.027
    [76] Wang C W, Wang Y, Graser J, et al. Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis[J]. ACS Nano,2013,7(12):11156-11165. doi: 10.1021/nn4048759
    [77] Zheng T H, Zhan J J, Pang J B, et al. Mesoporous Carbon Nanocapsules from Enzymatically Polymerized Poly(4-ethylphenol) Confined in Silica Aerosol Particles[J]. Advanced Materials,2006,18(20):2735-2738. doi: 10.1002/adma.200600808
    [78] Han W, Dong S X, Li B, et al. Preparation of polyacrylonitrile- based porous hollow carbon microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,520:467-476. doi: 10.1016/j.colsurfa.2017.02.009
    [79] Ding S Y, Gao J, Wang Q, et al. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction[J]. Journal of the American Chemical Society,2011,133(49):19816-19822. doi: 10.1021/ja206846p
    [80] St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69. doi: 10.1016/0021-9797(68)90272-5
    [81] Lu A H, Hao G P, Sun Q. Can Carbon Spheres Be Created through the St?ber Method?[J]. Angewandte Chemie International Edition,2011,50(39):9023-9025. doi: 10.1002/anie.201103514
    [82] Liu J, Qiao S Z, Liu H, et al. Extension of The St?ber Method to the Preparation of Monodisperse Resorcinol–Formaldehyde Resin Polymer and Carbon Spheres[J]. Angewandte Chemie International Edition,2011,50(26):5947-5951. doi: 10.1002/anie.201102011
    [83] Zhang C F, Hatzell K B, Boota M, et al. Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes[J]. Carbon,2014,77:155-164. doi: 10.1016/j.carbon.2014.05.017
    [84] Bin D S, Chi Z X, Li Y T, et al. Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres[J]. Journal of the American Chemical Society,2017,139(38):13492-13498. doi: 10.1021/jacs.7b07027
    [85] Wickramaratne N P, Xu J T, Wang M, et al. Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption[J]. Chemistry of Materials,2014,26(9):2820-2828. doi: 10.1021/cm5001895
    [86] Liu Y L, Ai K L, Lu L H. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields[J]. Chemical Reviews,2014,114(9):5057-5115. doi: 10.1021/cr400407a
    [87] Zhang L C, Yu X C, Lv L L, et al. Ultrathin Manganese Dioxide Nanosheets Grown on Mesoporous Carbon Hollow Spheres for High Performance Asymmetrical Supercapacitors[J]. ACS Applied Energy Materials,2018,1:5402-5409.
    [88] Zhang X E, Zhao R F, Wu Q H, et al. Petal-like MoS2 Nanosheets Space-Confined in Hollow Mesoporous Carbon Spheres for Enhanced Lithium Storage Performance[J]. ACS Nano,2017,11(8):8429-8436. doi: 10.1021/acsnano.7b04078
    [89] He G, Evers S, Liang X, et al. Tailoring Porosity in Carbon Nanospheres for Lithium–Sulfur Battery Cathodes[J]. ACS Nano,2013,7(12):10920-10930. doi: 10.1021/nn404439r
    [90] Chen A B, Li Y Q, Liu L, et al. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors[J]. Applied Surface Science,2017,393:151-158. doi: 10.1016/j.apsusc.2016.10.025
    [91] Du J, Liu L, Yu Y F, et al. Confined pyrolysis for direct conversion of solid resin spheres into yolk–shell carbon spheres for supercapacitor[J]. Journal of Materials Chemistry A,2019,7(3):1038-1044. doi: 10.1039/C8TA10266J
    [92] Du J, Liu L, Yu Y F, et al. Tuning Confined Nanospace for Preparation of N-doped Hollow Carbon Spheres for High Performance Supercapacitors[J]. ChemSusChem,2019,12(1):303-309. doi: 10.1002/cssc.201802403
    [93] Du J, Liu L, Yu Y F, et al. A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance[J]. Nanoscale,2019,11(10):4453-4462. doi: 10.1039/C8NR08784A
    [94] Fang M M, Chen Z M, Liu Y, et al. Uniform Discrete Nitrogen-Doped Double-Shelled Cage-like Hollow Carbon Spheres with Direct Large Mesopores for High-Performance Supercapacitors[J]. Energy Technology,2017,5(12):2198-2204. doi: 10.1002/ente.201700263
    [95] Yun J, Jun J, Lee J, et al. Fabrication of monodisperse nitrogen-doped carbon double-shell hollow nanoparticles for supercapacitors[J]. RSC Advances,2017,7(33):20694-20699. doi: 10.1039/C7RA03077K
    [96] Zang J, Ye J C, Fang X L, et al. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance[J]. Electrochimica Acta,2015,186:436-441. doi: 10.1016/j.electacta.2015.11.002
    [97] Liu C, Wang J, Li J S, et al. Synthesis of N-Doped Hollow-Structured Mesoporous Carbon Nanospheres for High-Performance Supercapacitors[J]. ACS Applied Materials & Interfaces,2016,8(11):7194-7204.
    [98] Yang T Y, Zhou R F, Wang D W, et al. Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage[J]. Chemical Communications,2015,51(13):2518-2521. doi: 10.1039/C4CC09366F
    [99] Liu T, Jiang C J, Cheng B, et al. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance[J]. Journal of Materials Chemistry A,2017,5(40):21257-21265. doi: 10.1039/C7TA06149H
    [100] Liu T, Jiang C J, Cheng B, et al. Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance[J]. Journal of Power Sources,2017,359:371-378. doi: 10.1016/j.jpowsour.2017.05.100
    [101] Liu T, Jiang C J, You W, et al. Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance[J]. Journal of Materials Chemistry A,2017,5(18):8635-8643. doi: 10.1039/C7TA00363C
    [102] Liu T, Zhang L Y, Cheng B, et al. Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance[J]. Chemical Communications,2018,54(30):3731-3734. doi: 10.1039/C8CC00991K
    [103] Liu T, Zhang L Y, You W, et al. Core-Shell Nitrogen-Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High-Performance Supercapacitor[J]. Small,2018,14(12):1702407. doi: 10.1002/smll.201702407
    [104] Fuertes A B, Valle-Vigón P, Sevilla M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules[J]. Chemical Communications,2012,48(49):6124-6126. doi: 10.1039/c2cc32552g
    [105] Liu C, Wang J, Li J S, et al. Controllable synthesis of N-doped hollow-structured mesoporous carbon spheres by an amine-induced St?ber-silica/carbon assembly process[J]. Journal of Materials Chemistry A,2016,4(30):11916-11923. doi: 10.1039/C6TA03748H
    [106] Xu M, Yu Q, Liu Z H, et al. Tailoring porous carbon spheres for supercapacitors[J]. Nanoscale,2018,10(46):21604-21616. doi: 10.1039/C8NR07560C
    [107] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer[J]. Science,2006,313(5794):1760. doi: 10.1126/science.1132195
    [108] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293-1302. doi: 10.1016/j.carbon.2004.12.028
    [109] Ania C O, Pernak J, Stefaniak F, et al. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors[J]. Carbon,2009,47(14):3158-3166. doi: 10.1016/j.carbon.2009.06.054
    [110] Chmiola J, Largeot C, Taberna P L, et al. Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory[J]. Angewandte Chemie International Edition,2008,47(18):3392-3395. doi: 10.1002/anie.200704894
    [111] Huang J S, Sumpter B G, Meunier V. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes[J]. Chemistry – A European Journal,2008,14(22):6614-6626. doi: 10.1002/chem.200800639
    [112] Raymundo-Pi?ero E, Leroux F, Béguin F. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer[J]. Advanced Materials,2006,18(14):1877-1882. doi: 10.1002/adma.200501905
    [113] Raymundo-Pi?ero E, Cadek M, Béguin F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds[J]. Advanced Functional Materials,2009,19(7):1032-1039. doi: 10.1002/adfm.200801057
    [114] Gong K P, Du F, Xia Z H, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [115] Jurewicz K, Babeł K, Źiółkowski A, et al. Ammoxidation of active carbons for improvement of supercapacitor characteristics[J]. Electrochimica Acta,2003,48(11):1491-1498. doi: 10.1016/S0013-4686(03)00035-5
    [116] Zhao Y, Yang L J, Chen S, et al. Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [117] Gao S Y, Wei X J, Liu H Y, et al. Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2015,3(46):23376-23384. doi: 10.1039/C5TA04809E
    [118] Zhu Y P, Liu Y P, Yuan Z Y. Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis[J]. Chemical Communications,2016,52(10):2118-2121. doi: 10.1039/C5CC08439C
    [119] Liu S M, Cai Y J, Zhao X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor[J]. Journal of Power Sources,2017,360:373-382. doi: 10.1016/j.jpowsour.2017.06.029
    [120] Huang Y X, Candelaria S L, Li Y W, et al. Sulfurized activated carbon for high energy density supercapacitors[J]. Journal of Power Sources,2014,252:90-97. doi: 10.1016/j.jpowsour.2013.12.004
    [121] Yu X M, Han P, Wei Z X, et al. Boron-Doped Graphene for Electrocatalytic N2 Reduction[J]. Joule,2018,2(8):1610-1622. doi: 10.1016/j.joule.2018.06.007
    [122] Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor[J]. Journal of Power Sources,2009,186(2):551-556. doi: 10.1016/j.jpowsour.2008.10.024
    [123] Li W R, Chen D H, Li Z, et al. Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte[J]. Carbon,2007,45(9):1757-1763. doi: 10.1016/j.carbon.2007.05.004
    [124] Hao L, Li X L, Zhi L J. Carbonaceous Electrode Materials for Supercapacitors[J]. Advanced Materials,2013,25(28):3899-3904. doi: 10.1002/adma.201301204
    [125] Li W R, Chen D H, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications,2007,9(4):569-573. doi: 10.1016/j.elecom.2006.10.027
    [126] Wang D W, Li F, Yin L C, et al. Nitrogen-Doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogen-Induced Redox Transitions[J]. Chemistry - A European Journal,2012,18(17):5345-5351. doi: 10.1002/chem.201102806
    [127] Jeong H M, Lee J W, Shin W H, et al. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes[J]. Nano Letters,2011,11(6):2472-2477. doi: 10.1021/nl2009058
    [128] Zhang L L, Liu L, Hu X L, et al. N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors[J]. Langmuir,2018,34(51):15665-15673. doi: 10.1021/acs.langmuir.8b02970
    [129] Chen A B, Li Y Q, Yu Y F, et al. Nitrogen-doped hollow carbon spheres for supercapacitors application[J]. Journal of Alloys and Compounds,2016,688:878-884. doi: 10.1016/j.jallcom.2016.07.163
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-03-16

目录

    /

    返回文章
    返回