留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and use of hollow carbon spheres for electric double-layer capacitors

XU Kuang-liang LIU Jing YAN Zhao-xiong JIN Mei XU Zhi-hua

徐匡亮, 刘景, 严朝雄, 晋梅, 徐志花. 空心炭球的制备及在双电层电容器中的应用进展. 新型炭材料, 2021, 36(4): 794-809. doi: 10.1016/S1872-5805(20)60517-0
引用本文: 徐匡亮, 刘景, 严朝雄, 晋梅, 徐志花. 空心炭球的制备及在双电层电容器中的应用进展. 新型炭材料, 2021, 36(4): 794-809. doi: 10.1016/S1872-5805(20)60517-0
XU Kuang-liang, LIU Jing, YAN Zhao-xiong, JIN Mei, XU Zhi-hua. Synthesis and use of hollow carbon spheres for electric double-layer capacitors. New Carbon Mater., 2021, 36(4): 794-809. doi: 10.1016/S1872-5805(20)60517-0
Citation: XU Kuang-liang, LIU Jing, YAN Zhao-xiong, JIN Mei, XU Zhi-hua. Synthesis and use of hollow carbon spheres for electric double-layer capacitors. New Carbon Mater., 2021, 36(4): 794-809. doi: 10.1016/S1872-5805(20)60517-0

空心炭球的制备及在双电层电容器中的应用进展

doi: 10.1016/S1872-5805(20)60517-0
基金项目: 国家自然科学基金(21871111);湖北省杰出青年基金(2019CFA078)
详细信息
    通讯作者:

    晋 梅,博士,副教授. E-mail:hmay7321@126.com

    徐志花,博士,教授. E-mail:xuzhihua78@sina.com

  • 中图分类号: TQ127.1+1

Synthesis and use of hollow carbon spheres for electric double-layer capacitors

Funds: National Natural Science Foundation of China (21871111); Excellent Youth Foundation of Hubei Province of China (2019CFA078)
More Information
  • 摘要: 超级电容器已逐渐成为一种重要的储能装置,依据储能机理可分为赝电容器和双电层电容器(Electric double-layer capacitors,EDLCs)。目前商用超级电容器主要是以炭材料为电极的EDLCs。空心炭球(Hollow carbon spheres,HCSs)具有大比表面积,良好的导电性,优异的电化学稳定性以及良好的机械强度等优点,其在EDLCs电极材料中的应用引起了研究者的广泛关注。本文对常用于HCSs合成的硬模板法、软模板法、无模板法和改进Stöber法以及HCSs在EDLCs中的电化学性能进行了综述,并对HCSs微结构中的比表面积、孔径尺寸和杂原子掺杂等因素与其电化学性能之间的关系进行了分析和归纳,以期为低成本、高活性HCSs应用在超级电容器和其他领域提供思路。
  • FIG. 784.  FIG. 784.

    FIG. 784.. 

    Figure  1.  The overall conception of this work related to the synthesis and electrochemical performance of HCSs in EDLCs[24,29-33].

    Figure  2.  (a) TEM image of amine-functionalized silica colloid and schematic illustration of the formation process of the carbon hollow-spheres, (b) TEM image of porous HCS, (c) plots of potential versus time at different current densities and (d) the variation of specific capacitance with 1000 charge-discharge cycles at the current density of 5 A g−1 and the corresponding coulomb efficiency for the porous HCS electrodes[54].

    Figure  3.  (a) A schematic illustration depicting the synthesis route for N- and O-doped HCSs, (b) TEM image of HCSs-700, (c) GCD curves at the current density of 1 A g−1 and (d) CV curves at the scan rate of 50 mV s−1 of HCSs prepared at different carbonization temperatures[30].

    Figure  4.  (a) A schematic illustration of the synthesis of nitrogen-rich porous carbon spheres, (b) TEM image of NPC800, (c) CV curves at the scan rate of 5 mV s−1 and (d) GCD curves at the current density of 0.5 A g−1 of NPC prepared at different carbonization temperatures[31,79].

    Figure  5.  (a) A schematic illustration of the one-pot, surfactant-free synthesis of mesoporous carbon hollow spheres, (b) TEM image of MCHS, (c) GCD curves of MCHS and (d) cycling stability of MCHS at the current density of 10 A g−1[24].

    Figure  6.  Normalized capacitance versus average pore size for different carbon materials in 1 mol L−1 H2SO4 electrolyte[111].

    Figure  7.  Schematic of functional groups of N-doped HCSs[47].

    Table  1.   A comparison of electrochemical performance of HCSs prepared by different methods.

    HCS sampleSynthetic methodCarbon precursorCarbonization temperature
    (°C)
    Specific surface area
    (m2 g−1)
    Pore size
    (nm)
    Current density
    (A g−1)
    Specific capacitance
    (F g−1)
    ElectrolyteRefs.
    Surface-openings HCSHard templatingResorcinol/
    formaldehyde
    800670.04.18 and 12.55a0.1272.21 M H2SO4[15]
    HCSHard templatingResorcinol/
    formaldehyde
    800555.63.87a0.1210.71 M H2SO4[15]
    N-P-HCMsHard templatingMelamine/
    formaldehyde
    8006492.6 and 3.7a0.52006 M KOH[25]
    N-HPCSHard templatingDopamine700674.918 – 3012576 M KOH[29]
    HPCSHard templatingFurfuryl alcohol90024892 – 40.21676 M KOH[33]
    HCSSgHard templatingGlucose8009340.6 – 60.23862 M KOH[39]
    HPCSHard templatingFurfuryl alcohol8006691.2 – 3.01240.06 M KOH[40]
    Activated HPCSsHard templatingFurfuryl alcohol80012901.5 – 3.01303.96 M KOH[40]
    HCMSCHard templatingPhenol/
    formaldehyde
    90016673.46a0.31621 M Et4NBF4/AN[44]
    MHCSHard templatingC2H48007701.8 – 6.90.2991 M H2SO4[45]
    N-PHCSHard templatingPolyaniline6002134.5b0.52136 M KOH[47]
    HMCSsHard templatingPolystyrene60013214.6a0.51576 M KOH[48]
    HMCSsHard templatingCarbonaceous gas80011892.7a0.21806 M KOH[49]
    Activated HCSsHard templatingPolypyrrole9009230.55 – 150.25356 M KOH[51]
    N-PCSHard templatingPolyacrylamide6506480.5 – 100.5194.76 M KOH[52]
    N-HCSHard templatingResorcinol and hexamethylenetetramine6004051 – 4.50.51206 M KOH[53]
    CHSsHard templatingGlucose80065840a0.52706 M KOH[54]
    HCSsSoft templatingPoly(o-phenylenediamine)6001453.06b--6 M KOH[30]
    HCSsSoft templatingPoly(o-phenylenediamine)7003553.83b0.52106 M KOH[30]
    HCSsSoft templatingPoly(o-phenylenediamine)8002121.19b--6 M KOH[30]
    HCSsSoft templatingPoly(styrene-co-divinylbenzene)7008050.7a0.55612 M KOH[57]
    PCSSoft templatingGlucose80016103.5b0.5801 M TEA-BF4/AN[70]
    PCSSoft templatingGlucose80016103.5b0.52196 M KOH[70]
    N-PCSTemplate-freePorous organic frameworks80052540a0.52305 M KOH[31]
    HCSTemplate-freeCorn starch800517.462 – 101265.46 M KOH[32]
    N-HCSTemplate-freeResorcinol/formaldehyde80094611966 M KOH[73]
    HCSTemplate-freeSucrose110011062a0.11126 M KOH[76]
    N-HCSTemplate-free3-aminophenol/
    formaldehyde
    8009112.7a11946 M KOH[128]
    MCHSModified Stöber methodResorcinol/
    formaldehyde
    70015827.5a1310.46 M KOH[24]
    N-HMCSsModified Stöber methodResorcinol/
    formaldehyde
    60011585.0b11596 M KOH[90]
    Yolk–shell CSModified Stöber methodResorcinol/
    formaldehyde
    8006165.7a0.53306 M KOH[91]
    N-HCSModified Stöber methodPolystyrene/
    polyaniline
    800953.84.1a0.5436.56 M KOH[92]
    HMCSsModified Stöber methodResorcinol/
    formaldehyde
    80014252.1a0.53526 M KOH[93]
    N-HMCSsModified Stöber methodResorcinol/
    formaldehyde
    80020012.4a13001 M H2SO4[105]
    N-HMCSsModified Stöber method3-aminophenol/
    formaldehyde
    60010063a11706 M KOH[129]
    Note:a pore width at the maximum of the pore size distribution;b average pore size; M: mα L−1.
    下载: 导出CSV
  • [1] Yan W, Shi Z Q, Yi H, et al. Supercapacitor devices based on graphene materials[J]. Journal of Physical Chemistry C,2009,113(30):13103-13107. doi: 10.1021/jp902214f
    [2] Burke A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [3] Mefford J T, Hardin W G, Dai S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes[J]. Nature Materials,2014,13(7):726-732. doi: 10.1038/nmat4000
    [4] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [5] Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research,2013,46(5):1094-1103. doi: 10.1021/ar200306b
    [6] Kouchachvili L, Yaïci W, Entchev E. Hybrid battery/supercapacitor energy storage system for the electric vehicles[J]. Journal of Power Sources, 2018, 374: 237-248.
    [7] Moreno J, Ortúzar M E, Dixon J W. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Transactions on Industrial Electronics,2006,53(2):614-623. doi: 10.1109/TIE.2006.870880
    [8] Fares A, Klumpner C, Rashed M. Design considerations to optimise supercapacitor-based energy storage systems for aerospace applications [C]. 2018: 1-8.
    [9] Peng C, Zhang S W, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors[J]. Progress in Natural Science,2008,18(7):777-788. doi: 10.1016/j.pnsc.2008.03.002
    [10] Yu J L, Lu W B, Pei S P, et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films[J]. ACS Nano,2016,10(5):5204-5211. doi: 10.1021/acsnano.6b00752
    [11] Afzal A, Abuilaiwi F A, Habib A, et al. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges[J]. Journal of Power Sources,2017,352:174-186. doi: 10.1016/j.jpowsour.2017.03.128
    [12] Tian X, Ma H R, Li Z, et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors[J]. Journal of Power Sources,2017,359:88-96. doi: 10.1016/j.jpowsour.2017.05.054
    [13] Dai S G, Liu Z, Zhao B, et al. A high-performance supercapacitor electrode based on N-doped porous graphene[J]. Journal of Power Sources,2018,387:43-48. doi: 10.1016/j.jpowsour.2018.03.055
    [14] Xu Z H, Yu J G, Liu G. Fabrication of carbon quantum dots and their application for efficient detecting Ru(bpy)32+ in the solution[J]. Sensors and Actuators B: Chemical,2013,181:209-214. doi: 10.1016/j.snb.2013.01.043
    [15] Wang H R, Zhou H W, Gao M, et al. Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes[J]. Electrochimica Acta,2019,298:552-560. doi: 10.1016/j.electacta.2018.12.070
    [16] Liu H, Guo H, Liu B H, et al. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries[J]. Advanced Functional Materials,2018,28(19):1707480. doi: 10.1002/adfm.201707480
    [17] Sun B, Kretschmer K, Xie X Q, et al. Hierarchical porous carbon spheres for high-performance Na-O2 batteries[J]. Advanced Materials,2017,29(48):1606816. doi: 10.1002/adma.201606816
    [18] Xu C P, Niu D C, Zheng N, et al. Facile synthesis of nitrogen-doped double-shelled hollow mesoporous carbon nanospheres as high-performance anode materials for lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(5):5999-6007.
    [19] Natarajan S, Bajaj H C, Aravindan V. Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage[J]. Journal of Materials Chemistry A,2019,7(7):3244-3252. doi: 10.1039/C8TA11521D
    [20] Wu F, Li J, Su Y F, et al. Layer-by-layer assembled architecture of polyelectrolyte multilayers and graphene sheets on hollow carbon spheres/sulfur composite for high-performance lithium-sulfur batteries[J]. Nano Letters,2016,16(9):5488-5494. doi: 10.1021/acs.nanolett.6b01981
    [21] Li Y, Qi J W, Li J S, et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6635-6644.
    [22] Gu D G, Ma R G, Zhou Y, et al. Synthesis of nitrogen-doped porous carbon spheres with improved porosity toward the electrocatalytic oxygen reduction[J]. ACS Sustainable Chemistry & Engineering,2017,5(11):11105-11116.
    [23] Fu Y S, Zhou Y, Peng Q, et al. Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors[J]. Journal of Power Sources,2018,402:43-52. doi: 10.1016/j.jpowsour.2018.09.022
    [24] Zhang H W, Noonan O, Huang X D, et al. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes[J]. ACS Nano,2016,10(4):4579-4586. doi: 10.1021/acsnano.6b00723
    [25] Zhang N, Liu F, Xu S D, et al. Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors[J]. Journal of Materials Chemistry A,2017,5(43):22631-22640. doi: 10.1039/C7TA07488C
    [26] Qiu D P, Gao A, Xie Z Y, et al. Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors[J]. ACS Applied Materials & Interfaces,2018,10(51):44483-44493.
    [27] Cai T H, Xing W, Liu Z, et al. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres[J]. Carbon,2015,86:235-244. doi: 10.1016/j.carbon.2015.01.032
    [28] Pan H, Li J Y, Feng Y P. Carbon nanotubes for supercapacitor[J]. Nanoscale Research Letters,2010,5:654-668. doi: 10.1007/s11671-009-9508-2
    [29] Fang M M, Chen Z M, Tian Q G, et al. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance[J]. Applied Surface Science,2017,425:69-76. doi: 10.1016/j.apsusc.2017.06.279
    [30] Yuan C Q, Liu X H, Jia M Y, et al. Facile preparation of N- and O- doped hollow carbon spheres derived from Poly(o-phenylenediamine) for supercapacitors[J]. Journal of Materials Chemistry A,2015,3(7):3409-3415. doi: 10.1039/C4TA06411A
    [31] Liu X H, Zhou L, Zhao Y Q, et al. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor[J]. ACS Applied Materials & Interfaces,2013,5(20):10280-10287.
    [32] Zhang Y Q, Jia M M, Gao H Y, et al. Porous hollow carbon spheres: facile fabrication and excellent supercapacitive properties[J]. Electrochimica Acta,2015,184:32-39. doi: 10.1016/j.electacta.2015.10.042
    [33] Zhou M, Lu Y, Chen H M, et al. Excellent durable supercapacitor performance of hierarchical porous carbon spheres with macro hollow cores[J]. Journal of Energy Storage,2018,19:35-40. doi: 10.1016/j.est.2018.07.007
    [34] Chen X C, Kierzek K, Jiang Z W, et al. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter[J]. The Journal of Physical Chemistry C,2011,115(36):17717-17724. doi: 10.1021/jp205257u
    [35] Yang S L, Zhu Y N, Cao C Y, et al. Controllable synthesis of multiheteroatoms Co-doped hierarchical porous carbon spheres as an ideal catalysis platform[J]. ACS Applied Materials & Interfaces,2018,10(23):19664-19672.
    [36] Li X F, Chi M F, Mahurin S M, et al. Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition[J]. Carbon,2016,101:57-61. doi: 10.1016/j.carbon.2016.01.043
    [37] Liu R, Mahurin S M, Li C, et al. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites[J]. Angewandte Chemie International Edition,2011,50(30):6799-6802. doi: 10.1002/anie.201102070
    [38] Ikeda S, Tachi K, Ng Y H, et al. Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls[J]. Chemistry of Materials,2007,19(17):4335-4340. doi: 10.1021/cm0702969
    [39] Guo D Y, Chen X A, Fang Z P, et al. Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes[J]. Electrochimica Acta,2015,176:207-214. doi: 10.1016/j.electacta.2015.07.032
    [40] Liu J, Wang X Y, Gao J, et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192. doi: 10.1016/j.electacta.2016.05.217
    [41] Shi X Z, Zhang S, Chen X C, et al. Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors[J]. Journal of Alloys and Compounds,2017,726:466-473. doi: 10.1016/j.jallcom.2017.08.012
    [42] Wenelska K, Ottmann A, Moszynski D, et al. Facile synthesis N-doped hollow carbon spheres from spherical solid silica[J]. Journal of Colloid and Interface Science,2018,511:203-208. doi: 10.1016/j.jcis.2017.10.003
    [43] Ghimire P, Gunathilake C, Wickramaratne N P, et al. Tetraethyl orthosilicate-assisted synthesis of nitrogen-containing porous carbon spheres[J]. Carbon,2017,121:408-417. doi: 10.1016/j.carbon.2017.06.007
    [44] Bhattacharjya D, Kim M S, Bae T S, et al. High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture[J]. Journal of Power Sources,2013,244:799-805. doi: 10.1016/j.jpowsour.2013.01.112
    [45] Chen X C, Kierzek K, Cendrowski K, et al. CVD generated mesoporous hollow carbon spheres as supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396:246-250. doi: 10.1016/j.colsurfa.2012.01.002
    [46] Hu L L, Yang L P, Zhang D, et al. Designed synthesis of SnO2–C hollow microspheres as an anode material for lithium-ion batteries[J]. Chemical Communications,2017,53(81):11189-11192. doi: 10.1039/C7CC05747D
    [47] Han J P, Xu G Y, Ding B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(15):5352-5357. doi: 10.1039/C3TA15271E
    [48] Wang G X, Wang R C, Liu L, et al. Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor[J]. Materials Letters,2017,197:71-74. doi: 10.1016/j.matlet.2017.03.163
    [49] Wang G X, Liang K H, Liu L, et al. Fabrication of monodisperse hollow mesoporous carbon spheres by using “confined nanospace deposition” method for supercapacitor[J]. Journal of Alloys and Compounds,2018,736:35-41. doi: 10.1016/j.jallcom.2017.11.080
    [50] Wang L L, Shao H H, Wang W J, et al. Nitrogen-doped hollow carbon nanospheres for high-energy-density biofuel cells and self-powered sensing of microRNA-21 and microRNA-141[J]. Nano Energy,2018,44:95-102. doi: 10.1016/j.nanoen.2017.11.055
    [51] Chen Z, Cao R, Ge Y H, et al. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance[J]. Journal of Power Sources,2017,363:356-364. doi: 10.1016/j.jpowsour.2017.07.037
    [52] Chen X Y, Chen C, Zhang Z J, et al. Nitrogen-doped porous carbon spheres derived from polyacrylamide[J]. Industrial & Engineering Chemistry Research,2013,52(34):12025-12031.
    [53] Liu F, Yuan R L, Zhang N, et al. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors[J]. Applied Surface Science,2018,437:271-280. doi: 10.1016/j.apsusc.2017.12.174
    [54] Han Y, Dong X T, Zhang C, et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material[J]. Journal of Power Sources,2012,211:92-96. doi: 10.1016/j.jpowsour.2012.03.053
    [55] Cheng Y L, Li T H, Fang C Q, et al. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers[J]. Applied Surface Science,2013,282:862-869. doi: 10.1016/j.apsusc.2013.06.072
    [56] Yang Z C, Zhang Y, Kong J H, et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers[J]. Chemistry of Materials,2013,25(5):704-710. doi: 10.1021/cm303513y
    [57] Chen J, Hong M, Chen J F, et al. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor[J]. Applied Surface Science,2018,443:367-373. doi: 10.1016/j.apsusc.2018.02.052
    [58] Wang T, Zhang P F, Sun Y, et al. New polymer colloidal and carbon nanospheres: Stabilizing ultrasmall metal nanoparticles for solvent-free catalysis[J]. Chemistry of Materials,2017,29(9):4044-4051. doi: 10.1021/acs.chemmater.7b00710
    [59] Zhang J R, Wang X, Qi G C, et al. A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres[J]. Carbon,2016,96:864-870. doi: 10.1016/j.carbon.2015.10.045
    [60] Wang J, Liu H Y, Diao J Y, et al. Size-controlled nitrogen-containing mesoporous carbon nanospheres by one-step aqueous self-assembly strategy[J]. Journal of Materials Chemistry A,2015,3(5):2305-2313. doi: 10.1039/C4TA05820H
    [61] Tang J, Wang J, Shrestha L K, et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor[J]. ACS Applied Materials & Interfaces,2017,9(22):18986-18993.
    [62] Xu F, Tang Z W, Huang S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications,2015,6:7221. doi: 10.1038/ncomms8221
    [63] Sun Z C, Bai F, Wu H M, et al. Hydrogen-bonding-assisted self-assembly: Monodisperse hollow nanoparticles made easy[J]. Journal of the American Chemical Society,2009,131(38):13594-13595. doi: 10.1021/ja905240w
    [64] Chen D Y, Jiang M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J]. Accounts of Chemical Research,2005,38(6):494-502. doi: 10.1021/ar040113d
    [65] Cui J W, Wang Y J, Postma A, et al. Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating[J]. Advanced Functional Materials,2010,20(10):1625-1631. doi: 10.1002/adfm.201000209
    [66] Wang G H, Sun Q, Zhang R, et al. Weak acid-base interaction induced assembly for the synthesis of diverse hollow nanospheres[J]. Chemistry of Materials,2011,23(20):4537-4542. doi: 10.1021/cm2018168
    [67] Han J, Song G P, Guo R. A Facile solution route for polymeric hollow spheres with controllable Size[J]. Advanced Materials,2006,18:3140-3144. doi: 10.1002/adma.200600282
    [68] Sun X M, Li Y D. Hollow carbonaceous capsules from glucose solution[J]. Journal of Colloid and Interface Science,2005,291(1):7-12. doi: 10.1016/j.jcis.2005.04.101
    [69] Li Z S, Li D H, Liu Z H, et al. Mesoporous carbon microspheres with high capacitive performances for supercapacitors[J]. Electrochimica Acta,2015,158:237-245. doi: 10.1016/j.electacta.2015.01.189
    [70] Tang Z H, Jiang S, Shen S L, et al. The preparation of porous carbon spheres with hierarchical pore structure and the application for high-performance supercapacitors[J]. Journal of Materials Science,2018,53(19):13987-14000. doi: 10.1007/s10853-018-2584-x
    [71] Fan Y, Yang X, Zhu B, et al. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors[J]. Journal of Power Sources,2014,268:584-590. doi: 10.1016/j.jpowsour.2014.06.100
    [72] Yang B, Wang C Y, Zheng J M, et al. Preparation of hollow carbon spheres with large sze and high specific surface area from phenolic resin[J]. Advanced Materials Research,2012,557-559:932-936. doi: 10.4028/www.scientific.net/AMR.557-559.932
    [73] Zhang L L, Liu L, Liu M, et al. Controllable synthesis of N-doped hollow, yolk-shell and solid carbon spheres via template-free method[J]. Journal of Alloys and Compounds,2019,778:294-301. doi: 10.1016/j.jallcom.2018.11.169
    [74] Du W, Wang X N, Zhan J, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:907-915. doi: 10.1016/j.electacta.2018.11.074
    [75] Kim S, Shibata E, Sergiienko R, et al. Purification and separation of carbon nanocapsules as a magnetic carrier for drug delivery systems[J]. Carbon,2008,46(12):1523-1529. doi: 10.1016/j.carbon.2008.05.027
    [76] Wang C W, Wang Y, Graser J, et al. Solution-based carbohydrate synthesis of individual slid, hollow, and porous carbon nanospheres using spray pyrolysis[J]. ACS Nano,2013,7(12):11156-11165. doi: 10.1021/nn4048759
    [77] Zheng T H, Zhan J J, Pang J B, et al. Mesoporous carbon nanocapsules from enzymatically polymerized poly(4-ethylphenol) confined in silica aerosol particles[J]. Advanced Materials,2006,18(20):2735-2738. doi: 10.1002/adma.200600808
    [78] Han W, Dong S X, Li B, et al. Preparation of polyacrylonitrile- based porous hollow carbon microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,520:467-476. doi: 10.1016/j.colsurfa.2017.02.009
    [79] Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society,2011,133(49):19816-19822. doi: 10.1021/ja206846p
    [80] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69. doi: 10.1016/0021-9797(68)90272-5
    [81] Lu A H, Hao G P, Sun Q. Can carbon spheres be created through the Stöber method?[J]. Angewandte Chemie International Edition,2011,50(39):9023-9025. doi: 10.1002/anie.201103514
    [82] Liu J, Qiao S Z, Liu H, et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angewandte Chemie International Edition,2011,50(26):5947-5951. doi: 10.1002/anie.201102011
    [83] Zhang C F, Hatzell K B, Boota M, et al. Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes[J]. Carbon,2014,77:155-164. doi: 10.1016/j.carbon.2014.05.017
    [84] Bin D S, Chi Z X, Li Y T, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres[J]. Journal of the American Chemical Society,2017,139(38):13492-13498. doi: 10.1021/jacs.7b07027
    [85] Wickramaratne N P, Xu J T, Wang M, et al. Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption[J]. Chemistry of Materials,2014,26(9):2820-2828. doi: 10.1021/cm5001895
    [86] Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews,2014,114(9):5057-5115. doi: 10.1021/cr400407a
    [87] Zhang L C, Yu X C, Lv L L, et al. Ultrathin manganese dioxide nanosheets grown on mesoporous carbon hollow spheres for high performance asymmetrical supercapacitors[J]. ACS Applied Energy Materials,2018,1:5402-5409.
    [88] Zhang X E, Zhao R F, Wu Q H, et al. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance[J]. ACS Nano,2017,11(8):8429-8436. doi: 10.1021/acsnano.7b04078
    [89] He G, Evers S, Liang X, et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes[J]. ACS Nano,2013,7(12):10920-10930. doi: 10.1021/nn404439r
    [90] Chen A B, Li Y Q, Liu L, et al. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors[J]. Applied Surface Science,2017,393:151-158. doi: 10.1016/j.apsusc.2016.10.025
    [91] Du J, Liu L, Yu Y F, et al. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor[J]. Journal of Materials Chemistry A,2019,7(3):1038-1044. doi: 10.1039/C8TA10266J
    [92] Du J, Liu L, Yu Y F, et al. Tuning confined nanospace for preparation of N-doped hollow carbon spheres for high performance supercapacitors[J]. ChemSusChem,2019,12(1):303-309. doi: 10.1002/cssc.201802403
    [93] Du J, Liu L, Yu Y F, et al. A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance[J]. Nanoscale,2019,11(10):4453-4462. doi: 10.1039/C8NR08784A
    [94] Fang M M, Chen Z M, Liu Y, et al. Uniform discrete nitrogen-doped double-shelled cage-like hollow carbon spheres with direct large mesopores for high-performance supercapacitors[J]. Energy Technology,2017,5(12):2198-2204. doi: 10.1002/ente.201700263
    [95] Yun J, Jun J, Lee J, et al. Fabrication of monodisperse nitrogen-doped carbon double-shell hollow nanoparticles for supercapacitors[J]. RSC Advances,2017,7(33):20694-20699. doi: 10.1039/C7RA03077K
    [96] Zang J, Ye J C, Fang X L, et al. Hollow-in-hollow carbon spheres for lithium-ion batteries with superior capacity and cyclic performance[J]. Electrochimica Acta,2015,186:436-441. doi: 10.1016/j.electacta.2015.11.002
    [97] Liu C, Wang J, Li J S, et al. Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2016,8(11):7194-7204.
    [98] Yang T Y, Zhou R F, Wang D W, et al. Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage[J]. Chemical Communications,2015,51(13):2518-2521. doi: 10.1039/C4CC09366F
    [99] Liu T, Jiang C J, Cheng B, et al. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance[J]. Journal of Materials Chemistry A,2017,5(40):21257-21265. doi: 10.1039/C7TA06149H
    [100] Liu T, Jiang C J, Cheng B, et al. Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance[J]. Journal of Power Sources,2017,359:371-378. doi: 10.1016/j.jpowsour.2017.05.100
    [101] Liu T, Jiang C J, You W, et al. Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance[J]. Journal of Materials Chemistry A,2017,5(18):8635-8643. doi: 10.1039/C7TA00363C
    [102] Liu T, Zhang L Y, Cheng B, et al. Fabrication of a hierarchical NiO/C hollow sphere composite and its enhanced supercapacitor performance[J]. Chemical Communications,2018,54(30):3731-3734. doi: 10.1039/C8CC00991K
    [103] Liu T, Zhang L Y, You W, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor[J]. Small,2018,14(12):1702407. doi: 10.1002/smll.201702407
    [104] Fuertes A B, Valle-Vigón P, Sevilla M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules[J]. Chemical Communications,2012,48(49):6124-6126. doi: 10.1039/c2cc32552g
    [105] Liu C, Wang J, Li J S, et al. Controllable synthesis of N-doped hollow-structured mesoporous carbon spheres by an amine-induced Stöber-silica/carbon assembly process[J]. Journal of Materials Chemistry A,2016,4(30):11916-11923. doi: 10.1039/C6TA03748H
    [106] Xu M, Yu Q, Liu Z H, et al. Tailoring porous carbon spheres for supercapacitors[J]. Nanoscale,2018,10(46):21604-21616. doi: 10.1039/C8NR07560C
    [107] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer[J]. Science,2006,313(5794):1760. doi: 10.1126/science.1132195
    [108] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293-1302. doi: 10.1016/j.carbon.2004.12.028
    [109] Ania C O, Pernak J, Stefaniak F, et al. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors[J]. Carbon,2009,47(14):3158-3166. doi: 10.1016/j.carbon.2009.06.054
    [110] Chmiola J, Largeot C, Taberna P L, et al. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory[J]. Angewandte Chemie International Edition,2008,47(18):3392-3395. doi: 10.1002/anie.200704894
    [111] Huang J S, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry – A European Journal,2008,14(22):6614-6626. doi: 10.1002/chem.200800639
    [112] Raymundo-Piñero E, Leroux F, Béguin F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials,2006,18(14):1877-1882. doi: 10.1002/adma.200501905
    [113] Raymundo-Piñero E, Cadek M, Béguin F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds[J]. Advanced Functional Materials,2009,19(7):1032-1039. doi: 10.1002/adfm.200801057
    [114] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [115] Jurewicz K, Babeł K, Źiółkowski A, et al. Ammoxidation of active carbons for improvement of supercapacitor characteristics[J]. Electrochimica Acta,2003,48(11):1491-1498. doi: 10.1016/S0013-4686(03)00035-5
    [116] Zhao Y, Yang L J, Chen S, et al. Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [117] Gao S Y, Wei X J, Liu H Y, et al. Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2015,3(46):23376-23384. doi: 10.1039/C5TA04809E
    [118] Zhu Y P, Liu Y P, Yuan Z Y. Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis[J]. Chemical Communications,2016,52(10):2118-2121. doi: 10.1039/C5CC08439C
    [119] Liu S M, Cai Y J, Zhao X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor[J]. Journal of Power Sources,2017,360:373-382. doi: 10.1016/j.jpowsour.2017.06.029
    [120] Huang Y X, Candelaria S L, Li Y W, et al. Sulfurized activated carbon for high energy density supercapacitors[J]. Journal of Power Sources,2014,252:90-97. doi: 10.1016/j.jpowsour.2013.12.004
    [121] Yu X M, Han P, Wei Z X, et al. Boron-doped graphene for electrocatalytic N2 reduction[J]. Joule,2018,2(8):1610-1622. doi: 10.1016/j.joule.2018.06.007
    [122] Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor[J]. Journal of Power Sources,2009,186(2):551-556. doi: 10.1016/j.jpowsour.2008.10.024
    [123] Li W R, Chen D H, Li Z, et al. Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte[J]. Carbon,2007,45(9):1757-1763. doi: 10.1016/j.carbon.2007.05.004
    [124] Hao L, Li X L, Zhi L J. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials,2013,25(28):3899-3904. doi: 10.1002/adma.201301204
    [125] Li W R, Chen D H, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications,2007,9(4):569-573. doi: 10.1016/j.elecom.2006.10.027
    [126] Wang D W, Li F, Yin L C, et al. Nitrogen-doped carbon monolith for alkaline supercapacitors and understanding nitrogen-induced redox transitions[J]. Chemistry - A European Journal,2012,18(17):5345-5351. doi: 10.1002/chem.201102806
    [127] Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters,2011,11(6):2472-2477. doi: 10.1021/nl2009058
    [128] Zhang L L, Liu L, Hu X L, et al. N-doped mesoporous carbon sheets/hollow carbon spheres composite for supercapacitors[J]. Langmuir,2018,34(51):15665-15673. doi: 10.1021/acs.langmuir.8b02970
    [129] Chen A B, Li Y Q, Yu Y F, et al. Nitrogen-doped hollow carbon spheres for supercapacitors application[J]. Journal of Alloys and Compounds,2016,688:878-884. doi: 10.1016/j.jallcom.2016.07.163
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  5974
  • HTML全文浏览量:  1192
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2020-05-24
  • 网络出版日期:  2021-03-16
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回