留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of porous carbons produced by template methods for supercapacitor applications

ZHANG Wei CHENG Rong-rong BI Hong-hui LU Yao-hui MA Lian-bo HE Xiao-jun

张伟, 程荣荣, 毕宏晖, 吕耀辉, 马连波, 何孝军. 模板法制备超级电容器用多孔炭的研究进展[J]. 新型炭材料, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7
引用本文: 张伟, 程荣荣, 毕宏晖, 吕耀辉, 马连波, 何孝军. 模板法制备超级电容器用多孔炭的研究进展[J]. 新型炭材料, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7
ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7
Citation: ZHANG Wei, CHENG Rong-rong, BI Hong-hui, LU Yao-hui, MA Lian-bo, HE Xiao-jun. A review of porous carbons produced by template methods for supercapacitor applications[J]. NEW CARBOM MATERIALS, 2021, 36(1): 69-81. doi: 10.1016/S1872-5805(21)60005-7

模板法制备超级电容器用多孔炭的研究进展

doi: 10.1016/S1872-5805(21)60005-7
详细信息
  • 中图分类号: TQ127.1+1

A review of porous carbons produced by template methods for supercapacitor applications

Funds: The authors thank to the Nature Science Foundation of China (No. U1710116, 52072002 and 51872005), Anhui Provincial Natural Science Foundation (No. 1808085ME138), and Key Projects of Natural Science Foundation of Universities in Anhui Province (No. KJ2019A0075)
More Information
  • 摘要: 多孔炭材料具有优良的电导率、高的比表面积以及优异的电化学稳定性,被广泛用于能量存储和转换领域。模板法被认为是制备具有良好孔结构和孔径分布炭材料最成熟的方法之一。本文归纳总结了模板法,包括硬模板(镁基、硅基、锌基、钙基)、软模板(常规软模板、离子液体、低共熔溶剂)、自模板(生物质、金属有机框架)制备超级电容器用分级多孔炭的造孔机制和构效关系;指出了模板法在炭材料孔结构调控方面存在的问题,并对未来的发展方向进行了展望。
  • Figure  1.  (a) The preparation schematic illustration and CV curves at various scan rates of 3D pillared-PCNSs (Reproduced with permission[14]. Copyright 2012, Wiley-VCH) and (b) the schematic diagram of direct fabrication process of CGNSs, nitrogen adsorption-desorption isotherms and pore size distributions of CGNSs (Reproduced with permission[17]. Copyright 2016, Elsevier).

    Figure  2.  (a) The preparation schematic diagram and CV curves of various scan rates of 3D flower-like hierarchical porous carbon material (Reproduced with permission[31]. Copyright 2014, Elsevier) and (b) the preparation schematic diagram and cycle stability of 3D interconnected graphene nanocapsules (Reproduced with permission[32]. Copyright 2017, Elsevier).

    Figure  3.  The preparation schematic diagram, HRTEM and Ragone plots of crumpled carbon nanonets. (Reproduced with permission[36]. Copyright 2019, Elsevier).

    Figure  4.  (a) The schematic illustration of the preparation of KNOSC. (Reproduced with permission[41]. Copyright 2019, Wiley-VCH). (b) The schematic illustration for the synthesis process and specific capacitances versus current densities of three-dimensional interconnected sheet-like porous carbon. (Reproduced with permission[44]. Copyright 2018, Elsevier). (c) The plausible mechanism for the formation of HCNS by condensation and carbonization of DES and TEM, cycling stability/coulombic efficiency at 5 A g−1, Ragone plots of the HCN-based supercapacitor employing an EMIMBF4 electrolyte. (Reproduced with permission[47]. Copyright 2019, Royal Society of Chemistry).

    Figure  5.  (a) Schematic illustration of the synthesis of hollow particle-based N-doped carbon nanofibers (Reproduced with permission[48]. Copyright 2017, Royal Society of Chemistry), (b) schematic illustration of synthesis of 2D hierarchical NPSs derived from K-MOF under various carbonization conditions (Reproduced with permission[49]. Copyright 2018, Wiley-VCH) and (c) schematic illustration of sustainable synthesis and assembly of B/N-CSs (Reproduced with permission[51]. Copyright 2016, Wiley-VCH).

  • [1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    [2] Wang G, Zhang L, Zhang J, et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. doi: 10.1039/C1CS15060J
    [3] Liu C, Li F, Ma L, et al. Advanced materials for energy storage[J]. Advanced Materials,2010,22(8):E28-E62. doi: 10.1002/adma.200903328
    [4] Augustyn V, Simon P, Dunn B, et al. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science,2014,7(5):1597-1614. doi: 10.1039/c3ee44164d
    [5] Ramya R, Sivasubramanian R, Sangaranarayanan M, et al. Conducting polymers-based electrochemical supercapacitors-progress and prospects[J]. Electrochimica Acta,2013,101:109-129. doi: 10.1016/j.electacta.2012.09.116
    [6] Xu H, Yang S, Zhu Y, et al. Preparation and electrochemical properties of heteroatom-doped graphene hydrogels[J]. New Carbon Materials,2020,35(2):140-146.
    [7] Yang Z, Ren J, Zhang Z, et al. Recent advancement of nanostructured carbon for energy applications[J]. Chemical Reviews,2015,115(11):5159-5223. doi: 10.1021/cr5006217
    [8] Zheng X, Luo J, Lv W, et al. Two-dimensional porous carbon: synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388. doi: 10.1002/adma.201501452
    [9] Gao X, Liu C, Han G, et al. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors[J]. New Carbon Materials,2019,34(5):403-416. doi: 10.1016/S1872-5805(19)60022-3
    [10] Yang Z, Yang Y, Lu C, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [11] Liu Z, Mo F, Li H, et al. Advances in flexible and wearable energy-storage textiles[J]. Small Methods,2018,2(11):1800124. doi: 10.1002/smtd.201800124
    [12] Xu F, Wu D, Fu R, et al. Design and preparation of porous carbons from conjugated polymer precursors[J]. Materials Today,2017,20(10):629-656. doi: 10.1016/j.mattod.2017.04.026
    [13] Cao X, Chuan X, Li A, et al. Preparation of porous carbons using a chrysotile template and their electrochemical performance as supercapacitor electrodes[J]. New Carbon Materials,2018,33(3):229-236.
    [14] Fan Z, Liu Y, Yan J, et al. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors[J]. Advanced Energy Materials,2012,2(4):419-424. doi: 10.1002/aenm.201100654
    [15] Xie K, Qin X, Wang X, et al. Carbon nanocages as supercapacitor electrode materials[J]. Advanced Materials,2012,24(3):347. doi: 10.1002/adma.201103872
    [16] Bu Y, Sun T, Cai Y, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors[J]. Advanced Materials,2017,29(24):1700470. doi: 10.1002/adma.201700470
    [17] He X, Zhang N, Shao X, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chemical Engineering Journal,2016,297:121-127. doi: 10.1016/j.cej.2016.03.153
    [18] He J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(46):19633-19640. doi: 10.1039/C4TA03323J
    [19] Cao J, Zhu C, Aoki Y, et al. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6(6):7292-7303.
    [20] Qian M, Wang Y, Xu F, et al. Extraordinary porous few-layer carbons of high capacitance from pechini combustion of magnesium nitrate gel[J]. ACS Applied Materials & Interfaces,2018,10(1):381-388. doi: 10.1021/acsami.7b11042
    [21] Shao J, Song M, Wu G, et al. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating[J]. Energy Storage Materials,2018,13:57-65. doi: 10.1016/j.ensm.2017.12.023
    [22] Wei F, Zhang H, He X, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-138. doi: 10.1016/S1872-5805(19)60006-5
    [23] Jiang L, Wang J, Mao X, et al. High rate performance carbon nano-cages with oxygen-containing functional groups as supercapacitor electrode materials[J]. Carbon,2017,111:207-214. doi: 10.1016/j.carbon.2016.09.081
    [24] Schacht S, Huo Q, Voigtmartin I, et al. Oil-water interface templating of mesoporous macroscale structures[J]. Science,1996,273(5276):768-771. doi: 10.1126/science.273.5276.768
    [25] Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society,2013,135(43):16002-16005. doi: 10.1021/ja407552k
    [26] Wang Q, Yan J, Xiao Y, et al. Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density[J]. Electrochimica Acta,2013,114:165-172. doi: 10.1016/j.electacta.2013.10.044
    [27] Wang Q, Yan J, Wei T, et al. Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors[J]. Carbon,2013,60:481-487. doi: 10.1016/j.carbon.2013.04.067
    [28] Zhao Z, Hao S, Hao P, et al. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode[J]. Journal of Materials Chemistry A,2015,3(29):15049-15056. doi: 10.1039/C5TA02770E
    [29] Ma X, Gan L, Liu M, et al. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(22):8407-8415. doi: 10.1039/C4TA00333K
    [30] Xia X, Zhang Y, Fan Z, et al. Novel metal@carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: A stable and flexible supercapacitor electrode[J]. Advanced Energy Materials,2015,5(6):1401709-1401717. doi: 10.1002/aenm.201401709
    [31] Wang Q, Yan J, Wang Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors[J]. Carbon,2014,67:119-127. doi: 10.1016/j.carbon.2013.09.070
    [32] He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073
    [33] Zeng R, Tang X, Huang B, et al. Nitrogen-doped hierarchically porous carbon materials with enhanced performance for supercapacitor[J]. ChemElectroChem,2018,5(3):515-522. doi: 10.1002/celc.201701021
    [34] Li J, Jiang Q, Wei L, et al. Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density[J]. Journal of Materials Chemistry A,2020,8(3):1469-1479. doi: 10.1039/C9TA07864A
    [35] Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta,2016,196:189-196. doi: 10.1016/j.electacta.2016.02.050
    [36] Wei F, He X, Zhang H, et al. Crumpled carbon nanonets derived from anthracene oil for high energy density supercapacitor[J]. Journal of Power Sources,2019,428:8-12. doi: 10.1016/j.jpowsour.2019.04.096
    [37] Estevezm L, Prabhakaran V, Garcia A, et al. Hierarchically porous graphitic carbon with simultaneously high surface area and colossal pore volume engineered via ice templating[J]. ACS Nano,2017,11(11):11047-11055. doi: 10.1021/acsnano.7b05085
    [38] Wang J, Tang J, Ding B, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials[J]. Nature Communications,2017,8:15717. doi: 10.1038/ncomms15717
    [39] He X, Yu H, Fan L, et al. Honeycomb-like porous carbons synthesized by a soft template strategy for supercapacitors[J]. Materials Letters,2017,195:31-33. doi: 10.1016/j.matlet.2017.02.062
    [40] Li W, Li B, Shen M, et al. Use of gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors[J]. Chemical Engineering Journal,2020,384:123309. doi: 10.1016/j.cej.2019.123309
    [41] Peng H, Yao B, Wei X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials,2019,9(19):1803665-1803673. doi: 10.1002/aenm.201803665
    [42] Fechler N, Fellinger T, Antonietti M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids[J]. Advanced Materials,2013,25(1):75-79. doi: 10.1002/adma.201203422
    [43] Sun L, Zhou H, Li L, et al. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor[J]. ACS Applied Materials & Interfaces,2017,9(31):26088-26095.
    [44] Xie X, He X, Zhang H, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal,2018,350:49-56. doi: 10.1016/j.cej.2018.05.011
    [45] Fechler N, Zussblatt N, Rothe R, et al. Eutectic syntheses of graphitic carbon with high pyrazinic nitrogen content[J]. Advanced Materials,2016,28(6):1287-1294. doi: 10.1002/adma.201501503
    [46] Zhong M, Liu H, Wang M, et al. Hierarchically N/O-enriched nanoporous carbon for supercapacitor application: Simply adjusting the composition of deep eutectic solvent as well as the ratio with phenol-formaldehyde resin[J]. Journal of Power Sources,2019,438:226982-226991. doi: 10.1016/j.jpowsour.2019.226982
    [47] Xue D, Zhu D, Duan H, et al. Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage[J]. Chemical Communications,2019,55(75):11219-11222. doi: 10.1039/C9CC06008A
    [48] Chen L, Lu Y, Yu L, et al. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energy & Environmental Science,2017,10(8):1777-1783.
    [49] Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials,2018,30(15):1705789. doi: 10.1002/adma.201705789
    [50] Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy,2016,19:165-175. doi: 10.1016/j.nanoen.2015.10.038
    [51] Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials,2016,26(1):111-119. doi: 10.1002/adfm.201504004
    [52] Gao F, Qu J, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. Journal of Materials Chemistry A,2016,4(19):7445-7452. doi: 10.1039/C6TA01314G
  • 加载中
图(6)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  25
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-01-13
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回