原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用

The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries

  • 摘要: 拉曼散射仪是一种基于激光物理学的快速、无损、高分辨率的通用表征工具,已被证明是研究温度、应力、电化学反应等诱导的结构相变的一种有力工具。碱金属电池的原位拉曼表征可以追踪充放电过程中的电极材料变化和界面反应。炭材料因其良好的可逆性、优异的稳定性、低电化学平台和低成本,成为应用最广泛的锂离子电池负极材料。本文详细总结了原位拉曼谱图在碱金属离子电池炭负极材料研究中的应用,着重整理归纳了原位拉曼谱图在分析Li+/Na+/K+在石墨、硬碳等炭材料储能机理中的应用,分析了尺寸效应、应力、掺杂、溶剂化共插层等对碱金属离子电池炭负极材料储能的影响。原位拉曼与原子力显微镜(AFM),X射线衍射(XRD)等高分辨率的原位表征联用以达到分析储能机理的目的,将会在储能领域中表现出广阔的应用前景。

     

    Abstract: Raman spectroscopy is a fast, non-destructive and high-resolution characterization tool based on laser physics that can be applied to a wide range of materials science problems. It has proven to be an effective tool in studying phase transitions induced by variables such as temperature, pressure or electrochemical reactions. In-situ Raman spectroscopy can be used to track any microstructural changes of the electrode materials and interface reactions in alkali metal-ion batteries during charging and discharging. Carbon materials have become the most widely used anode materials for lithium-ion batteries because of their good electrochemical reversibility, excellent stability, low electrochemical charge/discharge potential platform, and low cost. The use of in-situ Raman spectroscopy in understanding the reactions occurring in alkali metal-ion batteries using carbon anode materials is summarized with a focus on the energy storage mechanism in Li+/Na+/K+ ion batteries using carbon materials such as graphite and hard carbon as the anode materials. The effects of size, stress, doping, and the solvation-assisted co-intercalation of Li+/Na+/K+ ions on the energy storage behavior in alkali metal-ion batteries are analyzed. Based on the strength and weakness of in-situ Raman spectroscopy, its combination with AFM, in situ XRD and other high-resolution in situ technologies is used to reveal the energy storage mechanisms.

     

/

返回文章
返回