留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries

CHENG Xiao-qin LI Hui-jun ZHAO Zhen-xin WANG Yong-zhen WANG Xiao-min

程晓琴, 李慧君, 赵振新, 王永祯, 王晓敏. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. 新型炭材料, 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0
引用本文: 程晓琴, 李慧君, 赵振新, 王永祯, 王晓敏. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. 新型炭材料, 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0
CHENG Xiao-qin, LI Hui-jun, ZHAO Zhen-xin, WANG Yong-zhen, WANG Xiao-min. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0
Citation: CHENG Xiao-qin, LI Hui-jun, ZHAO Zhen-xin, WANG Yong-zhen, WANG Xiao-min. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. NEW CARBOM MATERIALS, 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0

原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用

doi: 10.1016/S1872-5805(21)60007-0
详细信息
  • 中图分类号: TQ127.1+1

The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries

Funds: The authors would like to offer special thanks to Naticnal Natural Science Foundation of China (U1810115, U1710256, 52072256)
More Information
  • 摘要: 拉曼散射仪是一种基于激光物理学的快速、无损、高分辨率的通用表征工具,已被证明是研究温度、应力、电化学反应等诱导的结构相变的一种有力工具。碱金属电池的原位拉曼表征可以追踪充放电过程中的电极材料变化和界面反应。炭材料因其良好的可逆性、优异的稳定性、低电化学平台和低成本,成为应用最广泛的锂离子电池负极材料。本文详细总结了原位拉曼谱图在碱金属离子电池炭负极材料研究中的应用,着重整理归纳了原位拉曼谱图在分析Li+/Na+/K+在石墨、硬碳等炭材料储能机理中的应用,分析了尺寸效应、应力、掺杂、溶剂化共插层等对碱金属离子电池炭负极材料储能的影响。原位拉曼与原子力显微镜(AFM),X射线衍射(XRD)等高分辨率的原位表征联用以达到分析储能机理的目的,将会在储能领域中表现出广阔的应用前景。
  • Figure  1.  Schematic representation of lithium-graphite intercalation compounds (Li-GICs).

    Figure  2.  Schematic representation of in operando system for Raman measurements[47]. Reproduced with permission.

    Figure  3.  Comparison of the Raman peak shift of the split G band for graphite flakes with different thicknesses[48]. Reproduced with permission.

    Figure  4.  (a) Raman spectra of NG-7 and GCNSs with various sizes and heat-treatment temperatures and (b) representative fitting results with three Lorentzians[49]. Reproduced with permission.

    Figure  5.  (a) Scheme illustration of the electrochemical coin cell assembly with a visible Kapton window and (b) Raman spectra of the graphene electrode during lithiation/delithiation[50]. Reproduced with permission.

    Figure  6.  (a) Sodium insertion model and (b) experimentally observed discharge curve[51]. Reproduced with permission.

    Figure  7.  In-situ Raman spectra of NMCSs-800 for SIBs at (a) the first cycle and (b) the second cycle [52]. Reproduced with permission.

    Figure  8.  In-situ Raman spectra and the corresponding discharge-charge profiles at the first cycle of N-GCNs for (a,b) LIBs (c,d) and SIBs, respectively[54]. Reproduced with permission.

    Figure  9.  Proposed sodium storage mechanism of the graphite electrode with linear ether-based electrolyte [55]. Reproduced with permission.

    Figure  10.  (a) In-situ Raman spectra (normalized) of FLG, (b) selected spectra and Lorentzian fits and (c) tracking the positions of the Raman G peak components[56]. Reproduced with permission.

    Figure  11.  (a) Schematic representing the staging mechanism revealed by the in-situ Raman experiments, (b) Selective Raman spectra taken at different states of charge and (c) waterfall plot of all Raman spectra[62]. Reproduced with permission.

    Figure  12.  (a,b) CVs for N-FLG and FLG, (c,d) Raman spectra at selected voltages for N-FLG and FLG and (e,f) schematic of the staging and defect storage mechanism in N-FLG and FLG[64]. Reproduced with permission.

    Figure  13.  Schematic illustration of the potassium storage behavior occurring in the NP-CNPs/electrolyte/K metal battery system[66]. Reproduced with permission.

    Figure  14.  (a) In-situ Raman spectra (normalized) with corresponding cell voltages and (b) analysis of the evolving G peak doublet with the component peak areas plotted with respect to the cell potential.[68]. Reproduced with permission.

  • [1] Zhang Y, Xia X, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials,2019,9(8):1803342. doi: 10.1002/aenm.201803342
    [2] Zhang Y, Song N, He J, et al. Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide[J]. Nano letters,2019,19(1):512-519. doi: 10.1021/acs.nanolett.8b04410
    [3] Zhao J, Zhang Y Z, Chen J, et al. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage[J]. Advanced Energy Materials,2020,10(18):2000099. doi: 10.1002/aenm.202000099
    [4] Li P, Hwang J, Sun Y. Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries[J]. Journal of Materials Chemistry A,2019,7(36):20675-20682. doi: 10.1039/C9TA08071F
    [5] Wu Y, Xing F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance[J]. Journal of Materials Chemistry A,2019,7(14):8581-8588. doi: 10.1039/C9TA01039D
    [6] Liu S, Zhao T, Tan X, et al. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries[J]. Nano Energy,2019,63:103894. doi: 10.1016/j.nanoen.2019.103894
    [7] Soler-Piña F, Hernández-Rentero C, Caballero A, et al. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries[J]. Nano Research,2019,13(1):86-94.
    [8] Kang M, Zhao H, Ye J, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A,2019,7(13):7565-7572. doi: 10.1039/C8TA12062E
    [9] Yang H, Xu R, Yao Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes[J]. Advanced Functional Materials,2019,29(13):1809195. doi: 10.1002/adfm.201809195
    [10] Yang S, Park S, Park G, et al. Conversion reaction mechanism of ultrafine bimetallic Co-Fe selenides embedded in hollow mesoporous carbon nanospheres and their excellent K-ion storage performance[J]. Small,2020,16(33):2002345. doi: 10.1002/smll.202002345
    [11] Zhao Y, Wang F, Wang C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy,2019,56:426-433. doi: 10.1016/j.nanoen.2018.11.040
    [12] Alvin S, Cahyadi H, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [13] Ding C, Huang L, Lan J, et al. Superresilient hard carbon nanofabrics for sodium-ion batteries[J]. Small,2020,16(11):1906883. doi: 10.1002/smll.201906883
    [14] Liu Y, Fang Y, Zhao Z, et al. A Ternary Fe1-xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials,2019,9(9):1803052. doi: 10.1002/aenm.201803052
    [15] Wang L, Yang G, Wang J, et al. In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries[J]. Small,2019,15(30):1901584. doi: 10.1002/smll.201901584
    [16] Zhao W, Hu X, Ci S, et al. N-doped carbon nanofibers with interweaved nanochannels for high-performance sodium-ion storage[J]. Small,2019,15(46):1904054. doi: 10.1002/smll.201904054
    [17] Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):2001755. doi: 10.1002/adma.202001755
    [18] Li L, Zuo Z, Wang F, et al. In situ coating graphdiyne for high-energy-density and stable organic cathodes[J]. Advanced Materials,2020,32(14):2000140. doi: 10.1002/adma.202000140
    [19] Li M, Mu B. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review[J]. Applied Energy,2019,242:695-715. doi: 10.1016/j.apenergy.2019.03.085
    [20] Adams R, Varma A, Pol V. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects[J]. Advanced Energy Materials,2019,9(35):1900550. doi: 10.1002/aenm.201900550
    [21] Wang C, Zhang B, Xia H, et al. Composition and architecture design of double-shelled Co0.85Se1-xSx@Carbon/Graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage[J]. Small,2020,16(17):1905853. doi: 10.1002/smll.201905853
    [22] Ferrari A, Basko D. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [23] Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):187401. doi: 10.1103/PhysRevLett.97.187401
    [24] Stepanidenko E, Arefina I, Khavlyuk P, et al. Influence of the solvent environment on luminescent centers within carbon dots[J]. Nanoscale,2020,12(2):602-609. doi: 10.1039/C9NR08663C
    [25] Behan J, Mates-Torres E, Stamatin S, et al. Untangling cooperative effects of pyridinic and graphitic nitrogen sites at metal-free N-doped carbon electrocatalysts for the oxygen reduction reaction[J]. Small,2019,15(48):1902081. doi: 10.1002/smll.201902081
    [26] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):1901261.
    [27] Almadori Y, Delport G, Chambard R, et al. Fermi level shift in carbon nanotubes by dye confinement[J]. Carbon,2019,149:772-780. doi: 10.1016/j.carbon.2019.04.041
    [28] Hettler S, Sreedhara M, Serra M, et al. YS-TaS2 and YxLa1-xS-TaS2 (0</=x</=1) nanotubes: A family of misfit layered compounds[J]. ACS Nano,2020,14(5):5445-5458. doi: 10.1021/acsnano.9b09284
    [29] Sun Z, Wu X L, Xu J, et al. Construction of bimetallic selenides encapsulated in nitrogen/sulfur Co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries[J]. Small,2020,16(19):1907670. doi: 10.1002/smll.201907670
    [30] Yang G, Li X, Guan Z, et al. Insights into lithium and sodium storage in porous carbon[J]. Nano letters,2020,20(5):3836-3843. doi: 10.1021/acs.nanolett.0c00943
    [31] Ding J, Zhang H, Zhou H, et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes[J]. Advanced Materials,2019,31(30):1900429.
    [32] Narayan J, Bhaumik A, Sachan R, et al. Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds[J]. Nanoscale,2019,11(5):2238-2248. doi: 10.1039/C8NR08823C
    [33] Lu Y, Liu Z, You S, et al. Electrospun carbon/iron nanofibers: The catalytic effects of iron and application in Cr (VI) removal[J]. Carbon,2020,166:227-244. doi: 10.1016/j.carbon.2020.05.031
    [34] Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Advanced Materials,2019,31(42):1803758. doi: 10.1002/adma.201803758
    [35] Wu L, Dong Y, Zhao J, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):1807981. doi: 10.1002/adma.201807981
    [36] Saito R, Hofmann M, Dresselhaus G, et al. Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics,2011,60(3):413-550. doi: 10.1080/00018732.2011.582251
    [37] Inaba M, Yoshida H, Ogumi Z, et al. In situ Raman study on electrochemical Li intercalation into graphite[J]. Cheminform,1995,26(12):20-26.
    [38] Amalraj S F, Aurbach D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries[J]. Journal of Solid State Electrochemistry,2011,15(5):877-890. doi: 10.1007/s10008-011-1324-9
    [39] Stancovski V, Badilescu S. In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview[J]. Journal of Applied Electrochemistry,2014,44(1):23-43. doi: 10.1007/s10800-013-0628-0
    [40] Kumar S N, Grekov D, Pre P, et al. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications-An overview[J]. Renewable & Sustainable Energy Reviews,2020,124:109743.
    [41] Zhong X, Wu Y, Zeng S, et al. Carbon and carbon hybrid materials as anodes for sodium-ion batteries[J]. Chemistry-an Asian Journal,2018,13(10):1248-1265. doi: 10.1002/asia.201800132
    [42] Drüe M, Seyring M, Rettenmayr M. Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release[J]. Journal of Power Sources,2017,353:58-66. doi: 10.1016/j.jpowsour.2017.03.152
    [43] Sonia F, Jangid M, Ananthoju B, et al. Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study[J]. Journal of Materials Chemistry A,2017,5(18):8662-8679. doi: 10.1039/C7TA01978E
    [44] Huang J, Csányi G, Zhao J, et al. First-principles study of alkali-metal intercalation in disordered carbon anode materials[J]. Journal of Materials Chemistry A,2019,7(32):19070-19080. doi: 10.1039/C9TA05453G
    [45] Liu Y, Li X, Fan L, et al. A review of carbon-based materials for safe lithium metal anodes[J]. Frontiers in Chemistry,2019,7:721. doi: 10.3389/fchem.2019.00721
    [46] Dahn J. Phase diagram of LixC6[J]. Physica Review B Condens Matter,1991,44(17):9170-9177. doi: 10.1103/PhysRevB.44.9170
    [47] Ni K, Wang X, Tao Z, et al. In operando probing of lithium-ion storage on single-layer graphene[J]. Advanced Materials,2019,31(23):1808091. doi: 10.1002/adma.201808091
    [48] Zou J, Sole C, Drewett N, et al. In situ study of Li intercalation into highly crystalline graphitic flakes of varying thicknesses[J]. Journal of Physical Chemistry Letters,2016,7(21):4291-4296. doi: 10.1021/acs.jpclett.6b01886
    [49] Maruyama S, Fukutsuka T, Miyazaki K, et al. Lithium-ion intercalation and deintercalation behaviors of graphitized carbon nanospheres[J]. Journal of Materials Chemistry A,2018,6(3):1128-1137. doi: 10.1039/C7TA07902H
    [50] Song H, Xie H, Xu C, et al. In situ measurement of strain evolution in the graphene electrode during electrochemical lithiation and delithiation[J]. Journal of Physical Chemistry C,2019,123(31):18861-18869. doi: 10.1021/acs.jpcc.9b05284
    [51] Reddy M A, Helen M, Gross A, et al. Insight into sodium Insertion and the Storage Mechanism in Hard Carbon[J]. Acs Energy Letters,2018,3(12):2851-2857. doi: 10.1021/acsenergylett.8b01761
    [52] Zhong X, Li Y, Zhang L, et al. High-performance sodium-ion batteries based on nitrogen-doped mesoporous carbon spheres with ultrathin nanosheets[J]. ACS Applied Materials & Interfaces,2019,11(3):2970-2977.
    [53] Li X, Hu X, Zhou L, et al. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(19):11976-11984. doi: 10.1039/C9TA01615E
    [54] Huang S, Li Z, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials,2018,28(10):1706294. doi: 10.1002/adfm.201706294
    [55] Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. doi: 10.1016/j.jpowsour.2015.05.116
    [56] Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano letters,2016,16(1):543-548. doi: 10.1021/acs.nanolett.5b04187
    [57] Yi Y, Li J, Zhao W, et al. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage[J]. Advanced Functional Materials,2020,30(31):2003039. doi: 10.1002/adfm.202003039
    [58] Zhou X, Chen L, Zhang W, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano letters,2019,19(8):4965-4973. doi: 10.1021/acs.nanolett.9b01127
    [59] Zeng S, Zhou X, Wang B, et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7(26):15774-15781. doi: 10.1039/C9TA03245B
    [60] Shen C, Yuan K, Tian T, et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(5):5015-5021.
    [61] Jiang S, Li Y, Qian Y, et al. Constructing a buffering and conducting carbon nanotubes-interweaved layer on graphite flakes for high-rate and long-term K-storage properties[J]. Journal of Power Sources,2019,436:226847. doi: 10.1016/j.jpowsour.2019.226847
    [62] Share K, Cohn A, Carter R, et al. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy[J]. Nanoscale,2016,8(36):16435-16439. doi: 10.1039/C6NR04084E
    [63] Qian Y, Jiang S, Li Y, et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials,2019,9(34):1901676. doi: 10.1002/aenm.201901676
    [64] Share K, Cohn A, Carter R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano,2016,10(10):9738-9744. doi: 10.1021/acsnano.6b05998
    [65] Chang X, Zhou X, Ou X, et al. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage[J]. Advanced Energy Materials,2019,9(47):1902672. doi: 10.1002/aenm.201902672
    [66] Gan Q, Xie J, Zhu Y, et al. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage[J]. ACS Applied Materials & Interfaces,2019,11(1):930-939.
    [67] Lu C, Sun Z, Yu L, et al. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries[J]. Advanced Energy Materials,2020,10(28):2001161. doi: 10.1002/aenm.202001161
    [68] Cohn A, Muralidharan N, Carter R, et al. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons[J]. Journal of Materials Chemistry A,2016,4(39):14954-14959. doi: 10.1039/C6TA06797B
    [69] Hui J, Schorr N, Pakhira S, et al. Achieving fast and efficient K+ intercalation on ultrathin graphene electrodes modified by a Li+ based solid-electrolyte interphase[J]. Journal of the American Chemical Society,2018,140(42):13599-13603. doi: 10.1021/jacs.8b08907
  • 加载中
图(15)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  37
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-12-11
  • 网络出版日期:  2021-02-03
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回