留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel integrated gas diffusion layer based on one-dimensional carbon materials and its application to direct methanol fuel cells

SHU Qing-zhu XIA Zhang-xun WEI Wei XU Xin-long WANG Su-li ZHAO Hong SUN Gong-quan

舒清柱, 夏章讯, 魏伟, 许新龙, 王素力, 赵红, 孙公权. 一维炭材料一体式气体扩散层的制备及其在直接甲醇燃料电池中的应用[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60017-3
引用本文: 舒清柱, 夏章讯, 魏伟, 许新龙, 王素力, 赵红, 孙公权. 一维炭材料一体式气体扩散层的制备及其在直接甲醇燃料电池中的应用[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60017-3
SHU Qing-zhu, XIA Zhang-xun, WEI Wei, XU Xin-long, WANG Su-li, ZHAO Hong, SUN Gong-quan. A novel integrated gas diffusion layer based on one-dimensional carbon materials and its application to direct methanol fuel cells[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60017-3
Citation: SHU Qing-zhu, XIA Zhang-xun, WEI Wei, XU Xin-long, WANG Su-li, ZHAO Hong, SUN Gong-quan. A novel integrated gas diffusion layer based on one-dimensional carbon materials and its application to direct methanol fuel cells[J]. NEW CARBOM MATERIALS. doi: 10.1016/S1872-5805(21)60017-3

一维炭材料一体式气体扩散层的制备及其在直接甲醇燃料电池中的应用

doi: 10.1016/S1872-5805(21)60017-3

A novel integrated gas diffusion layer based on one-dimensional carbon materials and its application to direct methanol fuel cells

Funds: This work is supported by the National Natural Science Foundation of China (Grant numbers: 21506212, 2150060681, and 21776027)
More Information
  • 摘要: 气体扩散层(GDL)是燃料电池(FCs)膜电极组件(MEA)的重要组成部分,起到支撑催化层、收集电流、对物料进行传输及再分配的作用。传统的扩散层一般以商品的炭纸或炭布为基底,但炭纸价格昂贵、缺乏柔韧性、孔结构单一,为了更好的进行气液相管理,需再涂覆上一层微孔层(MPL)。本文以碳纤维(CF)为骨架,复合多壁碳纳米管(MWCNT),并添加一定量的聚四氟乙烯(PTFE)作为粘结剂和憎水剂,通过减压抽滤成型法一步制成新型一体式气体扩散层(GDL/CNT-CF)。扫描电子显微镜(SEM)结合导电性、气体渗透性及孔隙率等表征表明,一体式扩散层中高导电性的碳纳米管在碳纤维中呈梯度分布,利于电子传输,形成的多级孔隙结构,利于物料分配,均匀分布的PTFE有助于水分排除,从而取代了由炭纸和微孔层构成的传统扩散层。将其应用于直接甲醇燃料电池(DMFC)的阴极或同时作为阴阳极扩散层时,具有优异的传质性能,单电池的最大功率密度相比商品扩散层分别提高了20 % 和35 %。
  • Figure  1.  Schematic diagram of the structure design of GDL/CNT-CF (a) and optical photography (b)

    Figure  2.  The comparison of surface morphologies between GDL/CNT-CF and GDL/Toray-060H: (a) and (b) Frontal morphologies of GDL/CNT-CF; (c) and (d) Reverse and cross-sectional morphologies of GDL/CNT-CF; (e) and (f) Frontal morphologies of GDL/Toray-060H; (g) and (h) Reverse and cross-sectional morphologies of GDL/Toray-060H

    Figure  3.  The measured gas permeability of GDL/CNT-CF with different ratios of MWCNTs to CFs: (a) Linear relationship between gas flow rate and pressure difference on both sides of the samples; (b) Comparison of calculated gas diffusion coefficients of the specific GDLs.

    Figure  4.  GDL/CNT-CF with different ratios of MWCNTs to CFs applied to cathode of the DMFC. (a) Anodic polarisation curves of the single cells. The test conditions are shown as: temperature is 80 °C, and the anode is fed with methanol solution with concentration of 0.5 M at a flow rate of 1 mL min−1, while the cathode is fed with hydrogen at 100 mL min−1 under a gas pressure of 0.1 MPa. The scanning rate is 1 mV s−1 and scanning range is 0-0.6 V. (b) Cathodic polarisation curves of the single cells; (c) Alternating-current (AC) impedance spectra of the different single cells under constant-current discharge of 100 mA cm−2. The test conditions are presented as follows: temperature is 80 °C, and the anode is fed with methanol solution with concentration of 0.5 M at a flow rate of 1 mL min−1, while the cathode is fed with oxygen at 100 mL min−1 under a gas pressure of 0.1 MPa.

    Figure  5.  Test results of performance of GDL/CNT-CF(3∶1) as the cathode GDL of DMFC under different conditions. (a) The temperatures are different, and the anode is fed with methanol with a concentration of 0.5 M at a flow rate of 1 mL min−1. The cathode is fed with oxygen at a flow rate of 100 mL min−1 under a gas pressure of 0.1 MPa; (b) The gas flow rate is different and temperature is 80 °C. The anode is fed with methanol with a concentration of 0.5 M at a flow rate of 1 mL min−1; (c) Methanol concentrations are different and the gas flow rate is 100 mL min−1. The temperature is 80 °C and the cathode is fed with oxygen at a flow rate of 100 mL min−1 under a pressure of 0.1 MPa

    Figure  6.  Performance comparison of single cells assembled with GDL/CNT-CF(3∶1) and GDL/Toray-060H as cathode GDLs of the DMFC. The test conditions are as follows: the temperature is 90 °C, and the anode is fed with methanol with a concentration of 1 M at a flow rate of 1 mL min−1, while the cathode is fed with oxygen at 200 mL min−1. (a) AC impendence spectra of the single cells under constant-current discharge of 100 mA cm−2; (b) Polarisation curves.

    Figure  7.  Test results of performance in air and oxygen environment when GDL/CNT-CF (3∶1) is applied to the cathode and anode of the DMFC. (a) Test results in the oxygen environment under the conditions: the temperature is 80 °C and the anode is fed with methanol with a concentration of 0.5 M at a flow rate of 1 mL min−1, while gas flow rate at the cathode is 100 mL min−1; (b) Oxygen-gain curves; (c) Anodic polarisation curves obtained when the temperature is 80 °C, and the anode is fed with methanol solution with a concentration of 0.5 M at a flow rate of 1 mL min−1, while the cathode is fed with hydrogen at 100 mL min−1 under a gas pressure of 0.1 MPa; (d) Curves of methanol permeation at the cathode tested under following conditions: the temperature is 80 °C and the anode is fed with methanol solution with a concentration of 0.5 M at a flow rate of 1 mL min−1, while the cathode is fed with nitrogen at 100 mL min−1 under a gas pressure of 0.1 MPa. The scanning rate is 1 mV s−1 and the scanning range is 0 to 0.6 V.

    Table  1.   Structural parameters of the GDLs.

    GDLGDL/CNT-CFGDL/Toray-060H
    Thickness (mm)0.1-0.120.23-0.25
    ASR (mΩ cm2)79
    Porosity (%)7560
    Density (g cm−3)0.360.45
    Maximum bending (o)180< 90
    Hydrophilicity and hydrophobicity/contact angle (o)145135
    下载: 导出CSV
  • [1] Wilberforce T, Alaswad A, Palumbo A, et al. Advances in stationary and portable fuel cell applications[J]. International Journal of Hydrogen Energy,2016,41(37):16509-16522. doi: 10.1016/j.ijhydene.2016.02.057
    [2] Dekel D R. Review of cell performance in anion exchange membrane fuel cells[J]. Journal of Power Sources,2018,375:158-169. doi: 10.1016/j.jpowsour.2017.07.117
    [3] Kamarudin S K, Achmad F, Daud W R W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices[J]. International Journal of Hydrogen Energy,2009,34(16):6902-6916. doi: 10.1016/j.ijhydene.2009.06.013
    [4] Liu G G, Zhang Y T, Cai J T, et al. Fuels for direct carbon fuel cells: present status and development prospects[J]. New Carbon Materials,2015,30(1):12-19.
    [5] Bresciani F, Rabissi C, Zago M, et al. On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation[J]. Journal of Power Sources,2015,273:680-687. doi: 10.1016/j.jpowsour.2014.09.149
    [6] Ge J B, Higier A, Liu H T. Effect of gas diffusion layer compression on PEM fuel cell performance[J]. Journal of Power Sources,2006,159(2):922-927. doi: 10.1016/j.jpowsour.2005.11.069
    [7] Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: Materials and designs[J]. International Journal of Hydrogen Energy,2012,37(7):5850-5865. doi: 10.1016/j.ijhydene.2011.12.148
    [8] Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research[J]. Applied Energy,2011,88(4):981-1007. doi: 10.1016/j.apenergy.2010.09.030
    [9] Williams M V, Begg E, Bonville L, et al. Characterization of gas diffusion layers for PEMFC[J]. Journal of the Electrochemical Society,2004,151(8):A1173-A1180. doi: 10.1149/1.1764779
    [10] Passalacqua E, Squadrito G, Lufrano F, et al. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry,2001,31(4):449-454. doi: 10.1023/A:1017547112282
    [11] Tse H K, Yuan K L, Ching H L. Effects of graphitization of PAN-based carbon fiber cloth on its use as gas diffusion layers in proton exchange membrane fuel cells[J]. New Carbon Materials,2007,22(2):97-102. doi: 10.1016/S1872-5805(07)60010-9
    [12] Mathur R B, Maheshwari P H, Dhami T L, et al. Processing of carbon composite paper as electrode for fuel cell[J]. Journal of Power Sources,2006,161(2):790-798. doi: 10.1016/j.jpowsour.2006.05.053
    [13] Ralph T R, Hards G A, Keating J E, et al. Low cost electrodes for proton exchange membrane fuel cells-Performance in single cells and Ballard stacks[J]. Journal of the Electrochemical Society,1997,144(11):3845-3857. doi: 10.1149/1.1838101
    [14] Todd D, Merida W. Morphologically controlled fuel cell transport layers enabled via electrospun carbon nonwovens[J]. Journal of Power Sources,2015,273:312-316. doi: 10.1016/j.jpowsour.2014.09.095
    [15] Park G G, Sohn Y J, Yim S D, et al. Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs[J]. Journal of Power Sources,2006,163(1):113-118. doi: 10.1016/j.jpowsour.2005.11.103
    [16] Hottinen T, Mikkola M, Mennola T, et al. Titanium sinter as gas diffusion backing in PEMFC[J]. Journal of Power Sources,2003,118(1-2):183-188. doi: 10.1016/S0378-7753(03)00087-9
    [17] Liu J, Sun G, Zhao F, et al. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC[J]. Journal of Power Sources,2004,133(2):175-180. doi: 10.1016/j.jpowsour.2004.02.009
    [18] Heo Y J, Park M, Kang W S, et al. Preparation and characterization of carbon black/pitch-based carbon fiber paper composites for gas diffusion layers[J]. Composites Part B: Engineering,2019,159:362-368. doi: 10.1016/j.compositesb.2018.09.108
    [19] Zhu Y, Zhang X, Li J, et al. Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell[J]. International Journal of Modern Physics B,2018,32(12):1850145. doi: 10.1142/S021797921850145X
    [20] Lee J, Banerjee R, George M G, et al. Multiwall carbon nanotube-based micro-porous layers for polymer electrolyte membrane fuel cells[J]. Journal of the electrochemical society,2017,164(12):F1149-F1157. doi: 10.1149/2.0861712jes
    [21] Gao Y, Sun G Q, Wang S L, et al. Carbon nanotubes based gas diffusion layers in direct methanol fuel cells[J]. Energy,2010,35(3):1455-1459. doi: 10.1016/j.energy.2009.11.031
    [22] Gao Y, Wang S L, Hou H Y, et al. Comparative studies of anode gas diffusion layers for direct methanol fuel cells[J]. Journal of Dalian University of Technology,2014,54(3):291-297.
    [23] Gao Y, Sun G, Wang S, et al. High-water-discharge gas diffusion backing layer of the cathode for direct methanol fuel cells[J]. Energy & Fuels,2008,22(6):4098-4101.
    [24] Xia Z X, Wang S L, Li Y J, et al. Vertically oriented polypyrrole nanowire arrays on Pd-plated Nafion (R) membrane and its application in direct methanol fuel cells[J]. Journal of Materials Chemistry A,2013,1(3):491-494. doi: 10.1039/C2TA00914E
    [25] Xu C, Zhao T S. In situ measurements of water crossover through the membrane for direct methanol fuel cells[J]. Journal of Power Sources,2007,168(1):143-153. doi: 10.1016/j.jpowsour.2007.03.023
    [26] Lu G Q, Liu F Q, Wang C Y. Water transport through Nafion 112 membrane in DMFCs[J]. Electrochemical and Solid-State Letters,2005,8(1):A1-A4. doi: 10.1149/1.1825312
    [27] Ren X M, Gottesfeld S. Electro-osmotic drag of water in poly (perfluorosulfonic acid) membranes[J]. Journal of the Electrochemical Society,2001,148(1):A87-A93. doi: 10.1149/1.1344521
    [28] Hietala S, Maunu S L, Sundholm F. Sorption and diffusion of methanol and water in PVDF-g-PSSA and Nafion? 117 polymer electrolyte membranes[J]. Journal of Polymer Science Part B: Polymer Physics,2000,38(24):3277-3284. doi: 10.1002/1099-0488(20001215)38:24<3277::AID-POLB90>3.0.CO;2-O
    [29] Liso V, Araya S S, Olesen A C, et al. Modeling and experimental validation of water mass balance in a PEM fuel cell stack[J]. International Journal of Hydrogen Energy,2016,41(4):3079-3092. doi: 10.1016/j.ijhydene.2015.10.095
    [30] Liu J G, Zhao T S, Chen R, et al. The effect of methanol concentration on the performance of a passive DMFC[J]. Electrochemistry Communications,2005,7(3):288-294. doi: 10.1016/j.elecom.2005.01.011
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-02-05

目录

    /

    返回文章
    返回