Micro/mesopore carbon spheres derived from sucrose for high performance supercapacitors
-
摘要: 以蔗糖溶液为碳前驱体,通过简单的水热炭化和KOH/NaOH碱活化方法制备微/介孔碳球。研究了KOH和NaOH活化参数对炭球比表面积和相应孔径分布的影响。炭球作为超级电容器的电极,在6 mol/L KOH电解液中具有高的比电容和良好的倍率性能。此外,基于1 mol/L MeEt3NBF4/PC有机电解液,微/介孔炭球电极组成的对称电容器表现出高达30.4 Wh kg-1的能量密度和18.5 kW kg-1的功率密度。在5 A g-1的电流密度下,充放电循环15 000次后比容量保持率为73.0%。Abstract: Micro/mesopore carbon spheres as electrode materials of supercapacitors were prepared by hydrothermal carbonization followed by KOH/NaOH activation using sucrose as the carbon precursor. The effects of KOH and NaOH activation parameters on the specific surface area, pore size distribution and electrochemical performance of the carbon spheres were investigated. Results indicate that the use of NaOH leads to the development of mesopores while the use of KOH is favorable to increase specific surface area and micropore volume. The pore size distribution of carbon spheres could be adjusted by varying the fraction of NaOH in the activation agent. A balanced capacitance and rate performance of the supercapacitor electrode in both 6 M KOH aqueous electrolyte and 1 M MeEt3NBF4/PC electrolyte is achieved when the carbonized product is activated at a mass ratio of NaOH+KOH/ carbonized product of 3∶1 with a NaOH/KOH mass ratio of 2∶1. As-prepared porous carbon delivers a capacitance of 235 F/g at 0.1 A/g and capacitance retention rate of 81.5% at 20 A/g in the 6 M KOH aqueous electrolyte. In 1 M MeEt3NBF4/PC, the cell based on the porous carbon delivers the highest energy and power output of 30.4 Wh kg-1 and 18.5 kW kg-1, respectively.
-
Key words:
- Sucrose /
- Carbon sphere /
- Hydrothermal carbonization /
- Mixed alkali activation /
- Supercapacitor
-
Table 1. Results of sorption tests and elemental compositions of activated carbons.
Sample SBET (m2 g-1) Smicro (m2 g-1) V(2.0-3.7 nm) (cm3 g-1) Pav (nm) Elemental composition by XPS C (at%) O (at%) ATCK 1643 1427 0 1.79 90.01 9.99 ATCNa 834 518 0.06 1.95 94.32 5.68 ATCK/Na 1160 957 0.03 1.82 92.74 7.26 -
[1] Zhang X, Kong D, Li X, et al. Dimensionally designed carbon-silicon hybrids for lithium storage[J]. Adv Funct Mater,2019,29:1806061-1806084. doi: 10.1002/adfm.201806061 [2] Tebyetekerwa M, Marriam I, Xu Z, et al. Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage[J]. Energy Environ Sci,2019,12:2148-2160. doi: 10.1039/C8EE02607F [3] Zhao D, Dai M, Liu H, et al. Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage[J]. Adv Mater Interfaces,2019,6:1901308-1901317. doi: 10.1002/admi.201901308 [4] Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chem Soc Rev,2017,46:6816-6854. doi: 10.1039/C7CS00205J [5] Jin H, Li J, Yuan Y, et al. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors[J]. Adv Energy Mater,2018,8:1801007-1801018. doi: 10.1002/aenm.201801007 [6] Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors[J]. Energy Environ Sci,2013,6:1249-1259. doi: 10.1039/c3ee22325f [7] Wei T, Wei X, Yang L, et al. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage[J]. J Power Sources,2016,331:373-381. doi: 10.1016/j.jpowsour.2016.09.053 [8] Wang C, Wu D, Wang H, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high-capacity[J]. J Mater Chem A,2018,6:1244-1254. doi: 10.1039/C7TA07579K [9] Wang K, Zhao N, Lei S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochim Acta,2015,166:1-11. doi: 10.1016/j.electacta.2015.03.048 [10] Gao F, Qu J, Zhao Z, et al. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochim Acta,2016,190:1134-1141. doi: 10.1016/j.electacta.2016.01.005 [11] Chen M, Kang X, Wumaier T, et al. Preparation of activated carbon from cotton stalk and its application in supercapacitor[J]. J Solid State Electrochem,2013,17:1005-1012. doi: 10.1007/s10008-012-1946-6 [12] Wu M, Ai P, Tan M, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor[J]. Chem Eng J,2014,245:166-172. doi: 10.1016/j.cej.2014.02.023 [13] Hao Z Q, Cao J P, Wu Y, et al. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor[J]. J Power Sources,2017,361:249-258. doi: 10.1016/j.jpowsour.2017.06.086 [14] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc,2008,130:2730-2731. doi: 10.1021/ja7106178 [15] Chang C, Li M, Wang H, et al. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors[J]. J Mater Chem A,2019,7:19939-19949. doi: 10.1039/C9TA06210F [16] He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340:183-191. doi: 10.1016/j.jpowsour.2016.11.073 [17] He X, Ling P, Qiu J, et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density[J]. J Power Sources,2013,240:109-113. doi: 10.1016/j.jpowsour.2013.03.174 [18] Tian X, Zhao N, Wang K, et al. Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers[J]. RSC Adv,2015,5:40884-40891. doi: 10.1039/C5RA02984H [19] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Adv Mater,2011,23:4828-4850. doi: 10.1002/adma.201100984 [20] Yu X, Wang J G, Huang Z H, et al. Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors[J]. Electrochem Commun,2013,36:66-70. doi: 10.1016/j.elecom.2013.09.010 [21] Maciá-Agulló J A, Moore B C, Cazorla-Amorós D, et al. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation[J]. Carbon,2004,42:1367-1370. doi: 10.1016/j.carbon.2004.01.013 [22] Hou J, Jiang K, Wei R, et al. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for Superior Performance Supercapacitors[J]. ACS Appl Mater Interfaces,2017,9:30626-30634. doi: 10.1021/acsami.7b07746 [23] Yao Y, Zhang Y, Li L, et al. Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors[J]. ACS Appl Mater Interfaces,2017,9:34944-34953. doi: 10.1021/acsami.7b10593 [24] Tian X, Li X, Yang T, et al. Flexible carbon nanofiber mats with improved graphitic structure as scaffolds for efficient all-solid-state supercapacitor[J]. Electrochim Acta,2017,247:1060-1071. doi: 10.1016/j.electacta.2017.07.103 [25] Thommes M, Cychosz K A. Physical adsorption characterization of nanoporous materials: progress and challenges[J]. Adsorption,2014,20:233-250. doi: 10.1007/s10450-014-9606-z [26] Jagiello J, Ania C, Parra J B, et al. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2[J]. Carbon,2015,91:330-337. doi: 10.1016/j.carbon.2015.05.004 [27] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87:1051-1069. doi: 10.1515/pac-2014-1117 [28] Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism[J]. Carbon,2003,41:267-275. [29] Tian X, Zhao N, Song Y, et al. Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution[J]. Electrochim Acta,2015,185:40-51. doi: 10.1016/j.electacta.2015.10.096 [30] Li X, Tian X, Yang T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management[J]. ACS Sustainable Chem Eng,2019,7:5742-5750. doi: 10.1021/acssuschemeng.8b05210 [31] Ma C, Song Y, Shi J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon,2013,51:290-300. doi: 10.1016/j.carbon.2012.08.056 [32] Tang C, Liu Y, Yang D, et al. Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors[J]. Carbon,2017,122:538-546. doi: 10.1016/j.carbon.2017.07.007 [33] Guo Q, Zhou X, Li X, et al. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes[J]. J Mater Chem,2009,19:2810-2816. doi: 10.1039/b820170f [34] Wang H, Gao Q, Hu J, et al. High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance[J]. Carbon,2009,47:2259-2268. doi: 10.1016/j.carbon.2009.04.021 [35] Tan M H, Li P, Zheng J T, et al. Preparation and modification of high performance porous carbons from petroleum coke for use as supercapacitor electrodes[J]. New Carbon Mater,2016,31:343-351. doi: 10.1016/S1872-5805(16)60018-5 [36] Chang C, Wang H, Zhang Y, et al. Fabrication of hierarchical porous carbon frameworks from metal-ion-assisted step-activation of biomass for supercapacitors with ultrahigh capacitance[J]. ACS Sustainable Chem Eng,2019,7:10763-10772. doi: 10.1021/acssuschemeng.9b01455 [37] Du J, Liu L, Yu Y, et al. A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance[J]. Nanoscale,2019,11:4453-4462. doi: 10.1039/C8NR08784A [38] Sun Y, Wu Q, Xu Y, et al. Highly conductive and flexible mesoporous graphitic films prepared by graphitizing the composites of graphene oxide and nanodiamond[J]. J Mater Chem,2011,21:7154-7160. doi: 10.1039/c0jm04434b [39] Yang S Y, Chang K H, Tien H W, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors[J]. J Mater Chem,2011,21:2374-2380. doi: 10.1039/C0JM03199B -