留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries

YAO Shan-shan HE Yan-ping Arslan Majeed ZHANG Cui-juan SHEN Xiang-qian LI Tian-bao QIN Shi-biao

姚山山, 何燕苹, ArslanMajeed, 张翠娟, 沈湘黔, 黎天保, 覃事彪. 基于PAN前驱体不同热处理温度制备NCFs及在锂硫电池中的电化学行为. 新型炭材料, 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X
引用本文: 姚山山, 何燕苹, ArslanMajeed, 张翠娟, 沈湘黔, 黎天保, 覃事彪. 基于PAN前驱体不同热处理温度制备NCFs及在锂硫电池中的电化学行为. 新型炭材料, 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X
YAO Shan-shan, HE Yan-ping, Arslan Majeed, ZHANG Cui-juan, SHEN Xiang-qian, LI Tian-bao, QIN Shi-biao. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater., 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X
Citation: YAO Shan-shan, HE Yan-ping, Arslan Majeed, ZHANG Cui-juan, SHEN Xiang-qian, LI Tian-bao, QIN Shi-biao. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries. New Carbon Mater., 2021, 36(3): 606-615. doi: 10.1016/S1872-5805(21)60032-X

基于PAN前驱体不同热处理温度制备NCFs及在锂硫电池中的电化学行为

doi: 10.1016/S1872-5805(21)60032-X
基金项目: 国家自然科学基金项目(51874146); 中国博士后科学基金特别资助项目(2018T110551); 中国博士后科学基金项目(2017M621640); 江苏省“六大人才高峰”高层次人才项目(XCL-125); 江苏大学人才启动基金项目(15JDG014)
详细信息
    通讯作者:

    姚山山,副研究员. E-mail: yaosshan@ujs.edu.cn

  • 中图分类号: TQ127.1+1

The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries

More Information
  • 摘要: 基于电纺聚丙烯腈(PAN)前驱体制备三维氮掺杂炭纳米纤维(NCFs)自支撑集流体,以Li2S6溶液为活性物质,研究了不同热处理温度下制备的NCFs理化性能及其在锂硫电池中的电化学行为。结果表明,热处理温度为900 ℃时,制备的NCFs(NCFs-900)表现出优异的电化学性能。当载硫量为4.19 mg·cm−2时,NCFs-900@Li2S6电极在0.2 C下,初始放电容量为875 mAh·g−1,经250周循环后仍有707 mAh·g−1,库伦效率为98.55%。同时在高倍率1 C下循环150周后容量保持率为81.53%。
  • FIG. 677.  FIG. 677.

    FIG. 677.. 

    Figure  1.  Schematic illustration of NCFs

    Figure  2.  (a) XRD patterns, (b) Raman spectra of NCFs; (c) N1s XPS spectra of (d) NCFs-800; (e) NCFs-900 and (f) NCFs-1000; HRTEM images of (g) NCFs-800; (h) NCFs-900 and (i) NCFs-1000.

    Figure  3.  SEM images of (a) PAN nanofibers; (b) NCFs-800; (c) NCFs-900 and (d) NCFs-1000; (e) Cross section of NCFs-900.

    Figure  4.  Electrochemical performances of NCFs@Li2S6 composite electrodes: (a) CV profiles at 0.1 mV s−1 between 1.7-2.8 V; (b) Discharge profiles at 0.2 C; (c) Rate performances of NCFs@Li2S6 composite electrodes at various current densities from 0.1 to 2 C; (d) Long cycling performance of NCFs@Li2S6 composite electrodes at 0. 2 C; (e) Schematic of Li2S6 adsorption in the NCFs.

    Figure  5.  (a) EIS of the Li-S batteries with NCFs@Li2S6 electrode; (b) The dependence of Zre on the reciprocal square root of the frequency ω-0.5 in the low frequency region for composite electrodes.

    Figure  6.  TEM images of NCFs-900 at different electron irradiation times: (a) 0 s; (b) 5 s; (c) 10 s and (d) 15 s; (e) The corresponding elemental mapping images of NCFs-900@Li2S6 electrode at charge state after 250 cycles.

    Table  1.   Microstructure parameters of NCFs.

    SamplesSurface
    area
    (m2· g−1)
    Pore
    volume
    (cm3· g−1)
    IG/IDElectronic conductivity
    (s·cm−1)
    D(002)
    (nm)
    NCFs-80083.670.070.930.260.358
    NCFs-900142.820.180.9912.190.357
    NCFs-1000130.600.271.132.780.355
    下载: 导出CSV

    Table  2.   The nitrogen functional groups of NCFs obtained from XPS peak analysis.

    SamplesNitrogen
    (at %)
    Pyridinc N
    (at %)
    Pyrrolic N
    (at %)
    Graphitic N
    (at %)
    NCFs-8009.024.013.341.67
    NCFs-9008.894.332.751.81
    NCFs-10007.963.532.671.78
    下载: 导出CSV
  • [1] Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews,2014,114:11751-11787. doi: 10.1021/cr500062v
    [2] Zhang Q, Li F, Huang J Q, et al. Lithium-sulfur batteries: Co-existence of challenges and opportunities[J]. Advanced Functional Materials,2018,28:1804589. doi: 10.1002/adfm.201804589
    [3] Kumar R, Liu J, Hwang J Y, et al. Recent research trends in Li-S batteries[J]. Journal of Materials Chemistry A,2018,6:11582-11605. doi: 10.1039/C8TA01483C
    [4] Wang X W, Yang C H, Xiong X H, et al. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries[J]. Energy Storage Materials,2019,16:344-353. doi: 10.1016/j.ensm.2018.06.015
    [5] Fang R P, Chen K, Yin L C, et al. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries[J]. Advanced Materials,2019,31:1800863. doi: 10.1002/adma.201800863
    [6] Zhang L L, Wang Y J, Niu Z Q, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon,2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067
    [7] Li F F, Lu W, Niu S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials,2014,29:309-315. doi: 10.1016/S1872-5805(14)60140-2
    [8] Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporou-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32:289-296. doi: 10.1016/S1872-5805(17)60123-9
    [9] Ding P, Yang J, Li X D, et al. Engineering high-performance sulfur electrode from industrial conductive carbons[J]. ACS Sustainable Chemistry & Engineering,2019,7:5515-5523.
    [10] Arie A AA, Kristianto H, Cengiz E C, et al. Preparation of salacca peel-based porous carbons by K2CO3 activation method as cathode materials for LiS battery[J]. Carbon Letters,2020,30:207-213. doi: 10.1007/s42823-019-00085-1
    [11] Ansari Y, Zhang S, Wen B, et al. Stabilizing Li-S battery through multilayer encapsulation of sulfur[J]. Advanced Energy Materials,2019,9:1802213. doi: 10.1002/aenm.201802213
    [12] Chen M F, Zhao S, Jing S X, et al. Suppressing the polysulfide shuttle effect by heteroatom-doping for high performance lithium sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6:7545-7557.
    [13] Yao S, Xue S, Peng S, et al. Electrospun zeolitic imidazolate framework-derived nitrogen-doped carbon nanofibers with high performance for lithium-sulfur batteries[J]. International Journal of Energy Research,2019,43:1892-1902. doi: 10.1002/er.4389
    [14] Wu J X, Pan Z Y, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6:12932-12944. doi: 10.1039/C8TA03968B
    [15] Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [16] Wang C, Su K, Wan W, et al. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2014,2:5018-5023. doi: 10.1039/C3TA14921H
    [17] Song J X, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie International Edition,2015,54:4325-4329. doi: 10.1002/anie.201411109
    [18] Li Q C, Song Y Z, Xu R Z, et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries[J]. ACS Nano,2018,12:10240-10250. doi: 10.1021/acsnano.8b05246
    [19] Guo J C, Yang Z C, Yu Y C, et al. A. Lithium sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society,2013,135:763-767. doi: 10.1021/ja309435f
    [20] Hou T Z, Peng H J, Huang J Q, et al. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium(poly)sulfides in lithium-sulfur batteries[J]. 2D Materials,2015,2:014011. doi: 10.1088/2053-1583/2/1/014011
    [21] Qiu Y C, Li W F, Zhao W, et al. High rate, ultralong cycle life lithium/sulfur batteries enabled by nitrogen-doped graphene[J]. Nano Letters,2014,14:4821-4827. doi: 10.1021/nl5020475
    [22] Rao D W, Wang Y H, Zhang L Y, et al. Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution[J]. Carbon,2016,110:207-214. doi: 10.1016/j.carbon.2016.09.021
    [23] Yang D H, Zhou H Y, Liu H, et al. Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries[J]. iScience,2019,13:243-253. doi: 10.1016/j.isci.2019.02.019
    [24] Wang M Y, Xia X H, Zhou Y, et al. Porous carbon hosts for lithium-sulfur batteries[J]. Chemistry A European Journal,2019,25:3710-3725. doi: 10.1002/chem.201803153
    [25] Bai Y, Huang Z H, Zhang Z J, et al. Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone[J]. New Carbon Materials,2019,34:533-538. doi: 10.1016/S1872-5805(19)60029-6
    [26] Xue J J, Wu T, Dai Y Q, et al. Electrospinng and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119:5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [27] Cho C W, Cho D, Ko Y G, et al. Stabilization, carbonization, and characterization of PAN precursor webs processed by electrospinning technique[J]. Carbon Letters,2007,7:313-320.
    [28] Yao S, Zhang C, He Y, et al. Functionalization of nitrogen-doped carbon nanofibers with polyamidoamine dendrimer as a freestanding electrode with high sulfur loading for lithium-polysulfides batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8:7815-7824.
    [29] Chiochan P, Kosasang S, Ma N, et al. Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries[J]. Carbon,2020,158:244-255. doi: 10.1016/j.carbon.2019.12.015
    [30] Zha C, Wu D, Zhao Y, et al. Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries[J]. Journal of Energy Chemistry,2021,52:163-169. doi: 10.1016/j.jechem.2020.04.059
    [31] Li M Q, Bi Z H, Xie L J, et al. From starch to carbon materials: insight into the cross-linking reaction and its influence on the carbonization process[J]. ACS Sustainable Chemistry & Engineering,2019,7:14796-14804.
    [32] Xie L J, Su F Y, Xie L F, et al. Effect of pore structure and doping species on charge storage mechanism in porous carbon-based supercapacitors[J]. Materials Chemistry Frontiers,2020,4:2610-2634. doi: 10.1039/D0QM00180E
    [33] Song N J, Lu C X, Chen C M, et al. Effect of annealing temperature on the mechanical properties of flexible graphene films[J]. New Carbon Materials,2017,32:221-226. doi: 10.1016/S1872-5805(17)60119-7
    [34] Liu Q, Xu Y Y, Mu S J, et al. The effect of nitrogen and/boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2014, 29: 309-315.
    [35] Ren G Z, Chen C J, Deng L H, et al. Microstructural heterogeneity on the cylindrical surface of carbon fibers analyzed by Raman spectroscopy[J]. New Carbon Materials,2015,30:476-480. doi: 10.1016/S1872-5805(15)60202-5
    [36] Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon,2005,43:2175-2185. doi: 10.1016/j.carbon.2005.03.031
    [37] Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem,2018,5:3506-3513. doi: 10.1002/celc.201800937
    [38] Zhu J D, Chen C, Lu Y, et al. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon,2015,94:189-195. doi: 10.1016/j.carbon.2015.06.076
    [39] Agend F, Naderi N, Fareghi-Alamdari A. Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers[J]. Journal of Applied Polymer Science,2007,106:255-259. doi: 10.1002/app.26476
    [40] Zhang L F, Aboagye A, Kellar A, et al. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal Material Science,2014,49:463-480. doi: 10.1007/s10853-013-7705-y
    [41] Edie D D. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36:345-362. doi: 10.1016/S0008-6223(97)00185-1
    [42] Yao S, Tang H, Liu M, et al. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle life lithium sulfur batteries[J]. Journal of Alloys and Compounds,2019,788:639-648. doi: 10.1016/j.jallcom.2019.02.236
    [43] Yao S, Guo R, W u, Z Z, et al. Fabrication of Magnéli phase Ti4O7 nanorods as a functional sulfur material host for lithium-sulfur battery cathode[J]. Journal of Electroceramics,2020,44:154-162. doi: 10.1007/s10832-020-00206-7
    [44] Zhang C J, He Y P, Wang Y Q, et al. CoFe2O4 nanoparticles loaded N-doped carbon nanofibers networks as electrocatalyst for enhancing redox kinetics in Li-S batteries[J]. Applied Surface Science,2021,560: 149908 doi: 10.1016/j.apsusc.2021.149908
    [45] Yao S, Zhang C, Guo R, et al. CoS2-decorated cabalt/nitrogen co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2020, 8: 13600-13609 doi: 10.1021/acssuschemeng.0c02869
    [46] Yao S, Zhang C, Xie F, et al. Hybrid membrane with SnS2 nanoplates decorated nitrogen-doped carbon nanofiebrs as binder-free electrodes with ultrahigh sulfur loading for lithium sulfur batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8:2707-2715. doi: 10.1021/acssuschemeng.9b06064
    [47] Yao S, Guo R, Xie F, et al. Electrospun three-dimensional cobalt decorated nitrogen doped carbon nanofibers network as freestanding electrode for lithium/sulfur batteries[J]. Electrochimica Acta,2020,337:135765. doi: 10.1016/j.electacta.2020.135765
    [48] Wang X W, Zhang Z A, Qu Y H, et al. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries[J]. Journal of Power Sources,2014,256:361-368. doi: 10.1016/j.jpowsour.2014.01.093
    [49] Su D W, Cortie M, Wang G X. Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries[J]. Advanced Energy Materials,2017,7:1602014. doi: 10.1002/aenm.201602014
    [50] Guo D, Wei H, Chen X, et al. 3D hierarchical nitrogen-doped carbon nanoflower derived from chitosan for efficient electrocatalytic oxygen reduction and high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2017,5:18193-18206. doi: 10.1039/C7TA04728B
    [51] Pang Q, Nazar L F. Long-life and high-area-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano,2016,10:4111-4118. doi: 10.1021/acsnano.5b07347
    [52] Jin J, Shi Z Q, Wang C Y. Electrochemical performance of electrospun carbon nanofibers as free-standing and binder-free anodes for sodium-ion and lithium-ion batteries[J]. Electrochimica Acta,2014,141:302-310. doi: 10.1016/j.electacta.2014.07.079
    [53] Xue S K, Yao S, Jing M, et al. Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries[J]. Electrochimica Acta,2019,299:549-559. doi: 10.1016/j.electacta.2019.01.044
    [54] Zhuang R Y, Yao S, Shen X, et al. A freestanding MoO2-decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery[J]. International Journal of Energy Research,2019,43:1111-1120. doi: 10.1002/er.4334
    [55] Tang H, Yao S, Xue S, et al. In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multi-functional interlayer for excellent lithium-sulfur battery[J]. Electrochimica Acta,2018,263:158-167. doi: 10.1016/j.electacta.2018.01.066
    [56] Tsao Y, Lee M, Miller E, et al. Designing a quinone-based redox redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule,2019,3:872-884. doi: 10.1016/j.joule.2018.12.018
  • 20200100-SI-viedo.wmv
    20200100-SI.pdf
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  397
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-25
  • 修回日期:  2020-09-01
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回