留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响

刘玉婷 李璐 王嘉沛 费滢洁 刘牛顿 吴刚平

刘玉婷, 李璐, 王嘉沛, 费滢洁, 刘牛顿, 吴刚平. 碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响. 新型炭材料, 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5
引用本文: 刘玉婷, 李璐, 王嘉沛, 费滢洁, 刘牛顿, 吴刚平. 碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响. 新型炭材料, 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5
LIU Yu-ting, LI Lu, WANG Jia-pei, FEI Ying-jie, LIU Niu-dun, WU Gang-ping. Effect of carbon nanotubes on interfacial properties of a carbon fiber / polycarbonate composite. New Carbon Mater., 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5
Citation: LIU Yu-ting, LI Lu, WANG Jia-pei, FEI Ying-jie, LIU Niu-dun, WU Gang-ping. Effect of carbon nanotubes on interfacial properties of a carbon fiber / polycarbonate composite. New Carbon Mater., 2021, 36(3): 639-648. doi: 10.1016/S1872-5805(21)60035-5

碳纳米管对炭纤维/聚碳酸酯复合材料界面结合性能的影响

doi: 10.1016/S1872-5805(21)60035-5
基金项目: 国家自然科学基金委-山西煤基低碳联合基金(U1810116),山西省科技重大专项项目(20181101020),山西省应用基础研究计划(201901D211587),山西省重点研发计划(201903D121004, 201903D121102)。
详细信息
    作者简介:

    刘玉婷,硕士. E-mail:liuyuting@sxicc.ac.cn

    通讯作者:

    吴刚平,博士,研究员. E-mail:wgp@sxicc.ac.cn

  • 中图分类号: TB33

Effect of carbon nanotubes on interfacial properties of a carbon fiber / polycarbonate composite

Funds: National Natural Science Foundation of China -Shanxi Coal-based Low Carbon Joint Fund (U1810116); Major Science and Technology Projects of Shanxi Province (20181101020); Applied Fundamental Research Project of Shanxi Province (201901D211587); Key Research & Development Project of Shanxi Province (201903D121004, 201903D121102).
More Information
    Corresponding author: WU Gang-ping, Ph. D, Professor. E-mail: wgp@sxicc.ac.cn
  • 摘要: 为改善炭纤维和聚碳酸酯界面结合性能,制备了含碳纳米管的水性聚碳酸酯上浆剂和水性聚氨酯上浆剂,通过上浆工艺将碳纳米管引至炭纤维表面。分别采用单丝段裂法和定向纤维增强聚合物基复合材料垂直方向拉伸两种方法从微观和宏观两个角度研究了上浆剂种类及碳纳米管含量对复合材料界面结合性能的影响。结果表明:上浆剂可明显改善炭纤维/聚碳酸酯复合材料界面结合性能,由于优异的成膜性,聚氨酯上浆剂改善效果更明显;碳纳米管的加入对复合材料的界面性能有一定改善,在微观评价方法中,碳纳米管改善效果显著,因为碳纳米管可有效阻止界面滑移;在宏观评价中,碳纳米管改善效果不明显,主要是上浆剂的界面黏结发挥作用。
  • FIG. 681.  FIG. 681.

    FIG. 681..  FIG. 681.

    图  1  含CNTs上浆剂制备及上浆工艺示意图

    Figure  1.  Schematic diagram preparation of sizing agent containing CNTs and the sizing process.

    图  2  样品及受力示意图:单丝段裂法(左);90°拉伸(右)(尺寸单位:mm)

    Figure  2.  The diagram of sample for single filament split method (left); transvers tensile (right) (size in mm).

    图  3  上浆剂处理前后炭纤维表面XPS光谱(上)及C 1s窄扫并分峰拟合结果(下)

    Figure  3.  XPS spectra of carbon fiber surface (up) and C 1s narrow sweep and peak-splitting fitting results (down) before and after sizing.

    图  4  SEM照片:(a) 未上浆炭纤维CF;(b~f) PU上浆剂处理纤维,依次为CF0,CF0.05,CF0.1,CF0.2,CF0.3;(g~j) PC上浆剂处理纤维,依次为CF0,CF0.05,CF0.1,CF0.2

    Figure  4.  SEM images of CFs: (a) CF;(b–f) Fibers treated with PU sizing agent, from left to right,CF0,CF0.05,CF0.1,CF0.2,CF0.3;(g–j) PC sizing agent, from left to right,CF0,CF0.05,CF0.1,CF0.2.

    图  5  不同炭纤维表面能γ及其各分量

    Figure  5.  Surface energy and corresponding components of CFs.

    图  6  临界饱和状态双折射现象: (a) CF;(b) CF0(WPU);(c) CF0(WPC);(d) CF0.1(WPU);(e) CF0.1(WPC)及断点示意图: (f) 较弱结合;(g) 较强结合

    Figure  6.  Birefringence patterns obtained at the saturation state: (a) CF;(b) CF0(WPU); (c) CF0(WPC); (d) CF0.1(WPU); (e) CF0.1(WPC) and the model diagram of breakpoint morphology: (f) weaker combination, (g) stronger combination.

    图  7  单丝段裂法所测得的界面结合强度

    Figure  7.  The interfacial bonding strength obtained by SFFT.

    图  8  界面结合强度评价方法作用模型:(左)单丝段裂法;(右)90°拉伸

    Figure  8.  The model for evaluation methods of interfacial bonding strength: (left) SFFT; (right) Transvers tensile.

    表  1  上浆剂处理前后炭纤维表面官能团种类及含量

    Table  1.   The species and contents of functional groups on carbon fiber before and after sizing.

    Functional group
    (Bind energy (eV))
    CFWPUWPC
    C=C, C―C (284.4–284.8)80.7948.4776.18
    C―O (286.1–286.5)15.3236.3011.86
    C=O (287.4–288.0)3.8910.21-
    O―C=O (288.4–288.9)-5.028.85
    O―C(O)―O (290.4–290.8)--3.11
    下载: 导出CSV

    表  2  通过原子力显微镜测得炭纤维表面粗糙度Ra (nm)

    Table  2.   The surface roughness of CFs via AFM Ra (nm).

    CNT (wt%)As-received CF00.050.10.20.3
    WPU39.4233.2589.25102.35125.68498.32
    WPC32.9693.65121.37136.98632.69
    下载: 导出CSV

    表  3  CF单丝拉伸性能及Weibull模量

    Table  3.   Tensile properties and Weibull modulus.

    CFWPU WPC
    σf / GPamσf / GPam
    CF2.55 ± 0.526.069 2.55 ± 0.526.069
    CF02.79 ± 0.436.5422.77 ± 0.566.057
    CF0.052.71 ± 0.566.1502.69 ± 0.606.946
    CF0.12.73 ± 0.506.8812.70 ± 0.486.767
    CF0.22.73 ± 0.526.9892.72 ± 0.557.632
    下载: 导出CSV

    表  4  DCAT-21测量不同炭纤维在测试液体动态接触角(单位:°)

    Table  4.   Dynamic contact angle of carbon fibers with two different test liquids via DCAT-21 (Unit is degree).

    CFWPUWPC
    WaterDIMWaterDIM
    CF75.32 ± 0.2440.30 ± 0.1875.32 ± 0.2436.60 ± 0.18
    CF063.38 ± 0.1640.81 ± 0.1563.98 ± 0.1540.35 ± 0.10
    CF0.0564.29 ± 0.1936.45 ± 0.1664.32 ± 0.1936.42 ± 0.15
    CF0.164.67 ± 0.1936.38 ± 0.1564.75 ± 0.2136.29 ± 0.13
    CF0.265.07 ± 0.2336.35 ± 0.1665.04 ± 0.1936.29 ± 0.20
    下载: 导出CSV

    表  5  定向CF/PC复合材料垂直拉伸结果

    Table  5.   The results of vertical direction stretching for CF/PC composite.

    CFWPU WPC
    σt/MPa Increase/% Et/GPaσt/MPaIncrease/% Et/GPa
    CF49.02 ± 2.67-1.79 ± 0.09 49.02 ± 2.67-1.79 ± 0.09
    CF057.65 ± 2.0817.611.88 ± 0.0557.77 ± 2.1117.852.14 ± 0.06
    CF0.0558.40 ± 1.8919.141.96 ± 0.0858.02 ± 2.5518.361.72 ± 0.09
    CF0.159.56 ± 2.6021.501.78 ± 0.0958.40 ± 2.8619.131.61 ± 0.09
    CF0.255.51 ± 2.9213.241.52 ± 0.0854.60 ± 1.2511.381.49 ± 0.09
    CF0.346.52 ± 2.35−5.101.51 ± 0.0544.10 ± 2.27−10.041.57 ± 0.06
    下载: 导出CSV
  • [1] 张晓虎, 孟宇, 张炜. 炭纤维增强复合材料技术发展现状及趋势[J]. 纤维复合材料,2004,21(1):50-53. doi: 10.3969/j.issn.1003-6423.2004.01.015

    Zhang X H, Meng Y, Zhang W. The state of the art and trend of carbon fiber reinforced composite[J]. Fiber Composites,2004,21(1):50-53. doi: 10.3969/j.issn.1003-6423.2004.01.015
    [2] Kumar S, Doshi H, Srinivasarao M, et al. Fibers from polypropylene/nano carbon fiber composites[J]. Polymer,2002,43(5):1701-1703. doi: 10.1016/S0032-3861(01)00744-3
    [3] Martínez-Insua A, Da S L, Rilo B, et al. Comparison of the fracture resistances of pulpless teeth restored with a cast post and core or carbon-fiber post with a composite core[J]. Journal of Prosthetic Dentistry,1998,80(5):527-532. doi: 10.1016/S0022-3913(98)70027-7
    [4] Ageorges C, Ye L. Resistance welding of thermosetting composite/thermoplastic composite joints[J]. Composites Part A Applied Science & Manufacturing,2001,32(11):1603-1612.
    [5] 杨福生, 赵延斌, 吴靖. 国外热塑性树脂基复合材料现状及发展趋势[J]. 吉林化工学院学报,2001,18(3):74-78. doi: 10.3969/j.issn.1007-2853.2001.03.026

    Yang F S, Zhao Y B, Wu J. The situation and trend of exotic thermoplastic resin group composites[J]. Journal of Jilin Institute of Chemical Technology,2001,18(3):74-78. doi: 10.3969/j.issn.1007-2853.2001.03.026
    [6] Takeda N, Song D Y, Nakat K, et al. The effect of fiber surface treatment on the micro-fracture progress in glass fiber/Nylon 6 composites[J]. Composite Interfaces,1994,2(2):143-155. doi: 10.1163/156855494X00283
    [7] Li T Q, Zhang M Q, Zhang K, et al. The dependence of the fracture toughness of thermoplastic composite laminates on interfacial interaction[J]. Composites Science & Technology,2000,60(3):465-476.
    [8] Montes-Morán M A, Hattum F W J, Nunes J P, et al. A study of the effect of plasma treatment on the interfacial properties of carbon fibre–thermoplastic composites[J]. Carbon,2005,43(8):1795-1799. doi: 10.1016/j.carbon.2005.02.005
    [9] Li J, Cheng X H. Effect of surface treatment of carbon fibre on impact and tribological properties of thermoplastic polyimide composite under oil lubricated condition[J]. Surface Engineering,2013,24(6):416-421.
    [10] Ruan S L, Gao P, Yang X G, et al. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes[J]. Polymer,2003,44(19):5643-5654. doi: 10.1016/S0032-3861(03)00628-1
    [11] Xie X L, Mai Y W, Zhou X P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review[J]. Polymeric Materials Science & Engineering,2005,49(4):89-112.
    [12] Mikitaev A K, Kozlov G V. The effect of the ultrasound treatment on the structure of carbon nanotubes in polymer nanocomposites[J]. Inorganic Materials Applied Research,2016,7(3):434-436. doi: 10.1134/S2075113316030163
    [13] 刘杰, 周秀燕, 梁节英. 磺化聚醚砜上浆剂对炭纤维/聚醚砜复合材料界面性能的影响[J]. 复合材料学报,2015,32(2):420-426.

    Liu J, Zhou X Y, Liang J Y. Effects of sulfonated poly(ether sulfone) sizing agent on interfacial properties for carbon fibers/poly(ether sulfone) composites[J]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica,2015,32(2):420-426.
    [14] 曹莉娟, 杨禹, 吕春祥. 碳纳米管改性乳液上浆剂对炭纤维复合材料界面性能的影响[J]. 新型炭材料,2016,31(2):151-158.

    Cao L J, Yang Y, Lu C X. A sizing agent modified with carbon nanotubes used for the production of carbon fiber/bisphenol A epoxy composites[J]. New Carbon Materials,2016,31(2):151-158.
    [15] Liu W B, Zhang S, Hao L F, et al. Properties of carbon fiber sized with poly(phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science,2013,128(6):3702-3709. doi: 10.1002/app.38605
    [16] Zhandarov S, Mäder E. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters[J]. Composites Science & Technology,2005,65(1):149-160.
    [17] Worsley K A, Kondrat R W, Pal S K, et al. Isolation and identification of low molecular weight carboxylated carbons derived from the nitric acid treatment of single-walled carbon nanotubes[J]. Carbon,2011,49(15):4982-4986. doi: 10.1016/j.carbon.2011.06.040
    [18] Zhang Y, Wang X, Ning P, et al. Weibull analysis of the tensile behavior of fibers with geometrical irregularities[J]. Journal of Materials Science,2002,37(7):1401-1406. doi: 10.1023/A:1014580814803
    [19] Yao T T, Wu G P, Song C. Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test[J]. Composites Science & Technology,2017,149:108-115.
    [20] Li M, Gu Y, Liu Y, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers[J]. Carbon,2013,52(2):109-121.
    [21] 孙文章, 蔡再生, 林君亮. 水性聚氨酯整理剂对真丝绸的抗皱整理[J]. 丝绸,2002(1):15-17. doi: 10.3969/j.issn.1001-7003.2002.01.005

    Sun W Z, Cai Z S, Lin J L. Anti-crease finishing for silk fabrics with water-Soluble polyurethane[J]. Silk Monthly,2002(1):15-17. doi: 10.3969/j.issn.1001-7003.2002.01.005
    [22] Gotoh K, Yasukawa A, Ohkita M, et al. Wettability and surface free energy of electrolytically oxidized graphite fibers[J]. Colloid & Polymer Science,1995,273(12):1144-1150.
    [23] Liu Y T, Yao T T, Zhang W S, et al. Laser welding of carbon nanotube networks on carbon fibers from ultrasonic-directed assembly[J]. Materials Letters,2019,236:244-247. doi: 10.1016/j.matlet.2018.09.161
    [24] Deng S, Ye L, Mai Y W, et al. Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests[J]. Composites Part A Applied Science & Manufacturing,1998,29(4):423-434.
    [25] Park J M, Kong J W, Kim J W, et al. Interfacial evaluation of electrodeposited single carbon fiber/epoxy composites by fiber fracture source location using fragmentation test and acoustic emission[J]. Composites Science & Technology,2004,64(7):983-999.
    [26] Kim B W, Nairn J A. Observations of fiber fracture and interfacial debonding phenomena using the fragmentation test in single fiber composites[J]. Journal of Composite Materials,2002,36(15):1825-1858. doi: 10.1177/0021998302036015243
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  410
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2019-10-28
  • 网络出版日期:  2021-04-06
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回