留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-infrared emission carbon dots for bio-imaging applications

LI Li-ping REN Xiao-feng BAI Pei-rong LIU Yan XU Wei-yue XIE Jun ZHANG Rui-ping

李利平, 任晓烽, 白佩蓉, 刘妍, 许玮月, 解军, 张瑞平. 近红外荧光碳点的合成及其在生物成像中的应用. 新型炭材料, 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0
引用本文: 李利平, 任晓烽, 白佩蓉, 刘妍, 许玮月, 解军, 张瑞平. 近红外荧光碳点的合成及其在生物成像中的应用. 新型炭材料, 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0
LI Li-ping, REN Xiao-feng, BAI Pei-rong, LIU Yan, XU Wei-yue, XIE Jun, ZHANG Rui-ping. Near-infrared emission carbon dots for bio-imaging applications. New Carbon Mater., 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0
Citation: LI Li-ping, REN Xiao-feng, BAI Pei-rong, LIU Yan, XU Wei-yue, XIE Jun, ZHANG Rui-ping. Near-infrared emission carbon dots for bio-imaging applications. New Carbon Mater., 2021, 36(3): 632-638. doi: 10.1016/S1872-5805(21)60041-0

近红外荧光碳点的合成及其在生物成像中的应用

doi: 10.1016/S1872-5805(21)60041-0
详细信息
    通讯作者:

    解 军,教授. E-mail: junxie@sxmu.edu.cn

    张瑞平,教授. E-mail: zrp_7142@sxmu.edu.cn

  • 中图分类号: TQ127.1+1

Near-infrared emission carbon dots for bio-imaging applications

Funds: We thank Prof. LIU Yaodong and Dr. Mohammad Sohail for their written support. This work was financially supported by the National Natural Science Foundation of China (82001962), China Postdoctoral Science Foundation (2019M661056), Shanxi Province Science Foundation for Youths (201901D211337), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0407)
More Information
  • 摘要: 由于红光/近红外发射具有深层组织穿透力强、自体荧光小、对生物组织损伤小等特点,具有上述特性的碳点的制备与生物成像应用备受关注。本文以磺化四苯基卟啉为前驱体,采用溶剂热法合成近红外发射的荧光碳点(NIR-CDs)。NIR-CDs的最大发射峰位于692 nm,其荧光发射具有激发波长非依赖性,经分析NIR-CDs的近红外荧光发射主要源于分子态发光。此外,NIR-CDs还具有良好的水溶性和生物相容性、丰富的表面官能团、低毒性和优异的细胞标记能力,证实了NIR-CDs在细胞近红外成像中的应用潜力。本研究有望促进面向生物应用的近红外荧光碳点的发展,推动新型碳点的研究与实际应用。
  • FIG. 680.  FIG. 680.

    FIG. 680.. 

    Figure  1.  Synthetic route of NIR-CDs.

    Figure  2.  (a) TEM and (b) the size distribution histogram of the NIR-CDs; (c, d) HRTEM images of the NIR-CDs. The white circles stand for crystalline NIR-CDs, and yellow circles represent amorphous CDs.

    Figure  3.  (a-d) High-resolution scan of the C1s, N1s, O1s and S2p of the NIR-CDs.

    Figure  4.  (a) FTIR spectrum and (b) Zeta potential of the NIR-CDs.

    Figure  5.  (a) UV-visible absorption and (b) PL emission spectra of the NIR-CDs.

    Figure  6.  (a) Cell viability of HeLa cells after incubation with various concentrations of NIR-CDs; (b) Confocal images of Hela cells incubated with NIR-CDs at the concentration of 200 µg mL−1 obtained under dark field (right image), bright field (middle image) and their merged (left) image at the excitation of 543 nm laser.

  • [1] Li L P, Lu C C, Li S J, et al. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J]. Journal of Materials Chemistry B,2017,5:1935-1942.
    [2] Jia Q Y, Zhao Z Y, Liang K, et al. Recent advances and prospects of carbon dots in cancer nanotheranostics[J]. Materials Chemistry Frontiers,2020,4:449-471. doi: 10.1039/C9QM00667B
    [3] Yang S T, Cao L, Luo P G, et al. Carbon dots for optical imaging in vivo[J]. Journal of the American Chemical Society,2009,131:11308-11309. doi: 10.1021/ja904843x
    [4] Li J Y, Liu Y, Shu Q W, et al. One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay[J]. Langmuir,2017,33:1043-1050. doi: 10.1021/acs.langmuir.6b04225
    [5] Reyes D, Camacho M, Camacho M, et al. Laser ablated carbon nanodots for light emission[J]. Nanoscale Research Letters,2016,11:424. doi: 10.1186/s11671-016-1638-8
    [6] De Medeiros T V, Manioudakis J, Noun F, et al. Microwave-assisted synthesis of carbon dots and their applications[J]. Journal of Materials Chemistry C,2019,7:7175-7195. doi: 10.1039/C9TC01640F
    [7] Liu M L, Xu Y H, NIU F, et al. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging[J]. Analyst,2016,141(9):2657-2664. doi: 10.1039/C5AN02231B
    [8] Zhang X Y, Jiang M Y, Niu N, et al. Natural-product-derived carbon dots: from natural products to functional materials[J]. ChemSusChem,2018,11:11-24. doi: 10.1002/cssc.201701847
    [9] Jiang K, Zhang L, Lu J, et al. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition,2016,55:7231-7235. doi: 10.1002/anie.201602445
    [10] Wu Z L, Zhang P, Gao M X, et al. One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk-natural proteins[J]. Journal of Materials Chemistry B,2013,1:2868-2873. doi: 10.1039/c3tb20418a
    [11] Unnikrishnan B, Wu R S, Wei S C, et al. Fluorescent carbon dots for selective labelling of subcellular organelles[J]. ACS Omega,2020,5:11248-11261. doi: 10.1021/acsomega.9b04301
    [12] Du J J, Xu N, Fan J L, et al. Carbon dots for in vivo bioimaging and theranostics[J]. Small,2019,15:1805087. doi: 10.1002/smll.201805087
    [13] Zhang J, Yu S H. Carbon dots: large-scale synthesis, sensing and bioimaging[J]. Materials Today,2016,19:382-393. doi: 10.1016/j.mattod.2015.11.008
    [14] Wang Q L, Huang X X, Long Y J, et al. Hollow luminescent carbon dots for drug delivery[J]. Carbon,2013,59:192-199. doi: 10.1016/j.carbon.2013.03.009
    [15] Sun S, Zhang L, Jiang K, et al. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents[J]. Chemistry of Materials,2016,28:8659-8668. doi: 10.1021/acs.chemmater.6b03695
    [16] Li H X, Su D D, Gao H, et al. Design of red emissive carbon dots: Robust performance for analytical applications in pesticide monitoring[J]. Analytical Chemistry,2020,92:3198-3205. doi: 10.1021/acs.analchem.9b04917
    [17] Gao W L, Song H H, Wang X, et al. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo[J]. ACS Applied Materials & Interfaces,2018,10:1147-1154.
    [18] Gao Y F, Jiao Y, Lu W J, et al. Carbon dots with red emission as a fluorescent and colourimeteric dual-readout probe for the detection of chromium(vi) and cysteine and its logic gate operation[J]. Journal of Materials Chemistry B,2018,6:6099-6107. doi: 10.1039/C8TB01580E
    [19] Jiang K, Sun S, Zhang L, et al. Red, green, and blue luminescence by carbon dots: full-colour emission tuning and multicolour cellular imaging[J]. Angewandte Chemie International Edition,2015,54:5360-5363. doi: 10.1002/anie.201501193
    [20] Tan X Y, Li Y C, Li X H, et al. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J]. Chemical Communications,2015,51:2544-2546. doi: 10.1039/C4CC09332A
    [21] Liu M L, Chen B B, Li C M, et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing application[J]. Green Chemistry,2019,21:449-471. doi: 10.1039/C8GC02736F
    [22] Li L P, Zhang R P, Lu C X, et al. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications[J]. Journal of Materials Chemistry B,2017,5:7328-7334. doi: 10.1039/C7TB00634A
    [23] Pan L L, Sun S, Zhang L, et al. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging[J]. Nanoscale,2016,8:17350-17356. doi: 10.1039/C6NR05878G
    [24] Jiang K, Hu S Z, Wang Y C, et al. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots[J]. Small,2020,16:2001909. doi: 10.1002/smll.202001909
    [25] Stobinski L, Lesiak B, Malolepszy A, et al. Graphene oxide and reduced graphene oxide studies by the XRD, TEM and electron spectroscopy methods[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,195:145-154. doi: 10.1016/j.elspec.2014.07.003
    [26] Lei L, Wang W J, Wang C, et al. In situ growth of boron doped g-C3N4 on carbon fiber cloth as a recycled flexible film-photocatalyst[J]. Ceramics International,2021,47:1258-1267. doi: 10.1016/j.ceramint.2020.08.246
    [27] Pan L L, Sun S, Zhang A D, et al. Truly fluorescent excitation-dependent carbon dots and their applications in multicolour cellular imaging and multidimensional sensing[J]. Advanced Materials,2015,27:7782-7787. doi: 10.1002/adma.201503821
    [28] Li W K, Feng J-T, Ma Z- Q. Nitrogen, sulfur, boron and flavonoid moiety co-incorporated carbon dots for sensitive fluorescence detection of pesticides[J]. Carbon,2020,161:685-693. doi: 10.1016/j.carbon.2020.01.098
    [29] Sun W, Meng X, Xu C, et al. Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction[J]. Chinese Journal of Catalysis,2020,41:1826-1836. doi: 10.1016/S1872-2067(20)63646-4
    [30] Ye Q H, Yan F Y, Luo Y M, et al. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2017,173:854-862. doi: 10.1016/j.saa.2016.10.039
    [31] Wang L, Li W T, Yin L Q. Full-colour fluorescent carbon quantum dots[J]. Science Advances,2020,6:eabb6772. doi: 10.1126/sciadv.abb6772
    [32] Ding K Q, Zhou L J, Qu R L. Honeycomb-shaped carbon particles prepared from bicycle waste tires for anodes in lithium ion batteries[J]. Materials Chemistry and Physics,2020,251:123202. doi: 10.1016/j.matchemphys.2020.123202
    [33] Samantara A K, Chandra S S, Ghosh A. Sandwiched graphene with nitrogen, sulphur co-doped CQDs:An efficient metal-free material for energy storage and conversion applications[J]. Journal of Materials Chemistry A,2015,3:16961-16970. doi: 10.1039/C5TA03376D
    [34] Palaniappan S, Amarnath C. A. Polyaniline-dodecylhydrogensulfate-acid salt: Synthesis and characterization[J]. Materials Chemistry and Physics,2005,92:82-88. doi: 10.1016/j.matchemphys.2004.12.033
    [35] Hoang V C, Nguyen L H., Gomes V G, et al. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite[J]. Journal of Electroanalytical Chemistry,2019,832:87-96. doi: 10.1016/j.jelechem.2018.10.050
    [36] Dager A, Uchida T, Maekawa T, et al. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: Photoluminescence analysis using machine learning[J]. Scientific Reports,2019,9:14004. doi: 10.1038/s41598-019-50397-5
    [37] Zhang J, Zhang X Y, Dong S S, et al. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight[J]. Journal of Photochemistry and Photobiology A: Chemistry,2016,325:104-110. doi: 10.1016/j.jphotochem.2016.04.012
    [38] Li Y Y, Chen J J, Wang Y P, et al. Large-scale direct pyrolysis synthesis of excitation-independent carbon dots and analysis of ferric (III) ion sensing mechanism[J]. Applied Surface Science,2021,538:148-151.
    [39] Liu T, Li N, Dong J X, et al. Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and implicationlogic gate operation[J]. Sensors and Actuators B: Chemical,2016,231:147-153. doi: 10.1016/j.snb.2016.02.141
    [40] Sun X C, BRüCKNER C, Lei Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission[J]. Nanoscale,2015,7:17278-17282. doi: 10.1039/C5NR05549K
    [41] Perepichka D, Bryce M. Molecules with exceptionally small HOMO-LOMO gaps[J]. Angewandte Chemie International Edition,2005,44(34):5370-5373. doi: 10.1002/anie.200500413
  • 20210091-SI.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  361
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-05-26
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回