留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors

HOU Shi-da ZHOU Shi-lu ZHANG Shu-ming LI Hong-guang

侯仕达, 周仕禄, 张书铭, 李洪光. 基于碳点的固体发光材料:合成及其在白光发射二极管和光学传感器中的应用. 新型炭材料, 2021, 36(3): 527-545. doi: 10.1016/S1872-5805(21)60042-2
引用本文: 侯仕达, 周仕禄, 张书铭, 李洪光. 基于碳点的固体发光材料:合成及其在白光发射二极管和光学传感器中的应用. 新型炭材料, 2021, 36(3): 527-545. doi: 10.1016/S1872-5805(21)60042-2
HOU Shi-da, ZHOU Shi-lu, ZHANG Shu-ming, LI Hong-guang. Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors. New Carbon Mater., 2021, 36(3): 527-545. doi: 10.1016/S1872-5805(21)60042-2
Citation: HOU Shi-da, ZHOU Shi-lu, ZHANG Shu-ming, LI Hong-guang. Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors. New Carbon Mater., 2021, 36(3): 527-545. doi: 10.1016/S1872-5805(21)60042-2

基于碳点的固体发光材料:合成及其在白光发射二极管和光学传感器中的应用

doi: 10.1016/S1872-5805(21)60042-2
基金项目: 山东大学-山东中烟工业有限责任公司联合项目(JL-JS01029);国家自然科学基金(21875129)
详细信息
    通讯作者:

    李洪光,研究员. E-mail:hgli@sdu.edu.cn

  • 中图分类号: TQ127.1+1

Carbon-dot-based solid-state luminescent materials: Synthesis and applications in white light emitting diodes and optical sensors

More Information
  • 摘要: 碳点已成为碳质纳米材料家族的一颗新星。自从它们于2004年被偶然发现以来,获得了广泛的研究。基于碳点的固态发光材料环境友好、无毒、廉价,是取代稀土发光材料和半导体量子点的理想选择。然而,由于碳点易表现出聚集诱导猝灭的特点,将它们从溶液态转入固态时,如何保持其发光特性是一大挑战。本文介绍了碳点的合成方法,碳点基固态发光材料的制备方法及其在白光发光二极管和光学传感器中的典型应用。最后指出了碳点基固态发光材料仍然存在的缺点,并对其在白光发射二极管和光学传感器和其它领域的发展前景进行了展望。
  • FIG. 672.  FIG. 672.

    FIG. 672.. 

    Figure  1.  Two main methods for the synthesis of CDs. (a-c) Preparation of CDs from (a) petroleum coke[25], (b)vcarbon fibers[21] and (c) wastes[30], (d-f) preparation of CDs from (d) citric acid and urea[37], (e) guanidine carbonate (b)[38] and (f) resorcinol[39]. Reprinted with permission.

    Figure  2.  (a) Preparation of GQD-MF microspheres with white emissions of high-quality through polymer-mediated GQD aggregation and encapsulation[49], (b, c) low magnification and high-resolution TEM images of the PANI-GQD composite[52], (d) schematic illustration of the formation mechanism of starch/CD phosphors[61]and (e) UV-Vis absorption spectra of pure starch, g-CDs in water, and starch/g-CD phosphors[61]. Reprinted with permission.

    Figure  3.  (a) Schematic illustration of bioinspired synthesis of fluorescent CaCO3/CD hybrid composites[66], (b) visualization of the integrating folic acid-derived carbon nanodots (F-CNDs) in inorganic single crystals. Optical microscopy images (b1-b5) and confocal fluorescence microscopy (CFM) images (b6-b10) of CaCO3 (b1, b6), CaSO4·2H2O (b2, b7), SrSO4 (b3, b8), CaC2O4·H2O (b4, b9), and SrC2O4·H2O (b5, b10)[68], (c) illustration of the preparation of the metal-free phosphor, (d) a typical optical image of the crystals. (e) and (f) SEM images of the crystals[79]. Reprinted with permission.

    Figure  4.  (a) Schematic illustration of self-quenching-resistance of nitrogen-doped CDs powder, (b) tunable solid-state fluorescence[80], (c) schematic illustration of the preparation of the CD-ionogel[84] and (d) schematic diagram of the formation of CDSP through a one-pot sol-gel method[85]. Reprinted with permission.

    Figure  5.  (a, b) TEM images with different magnifications of the composite phosphors[87], (c) absorption spectra of cellulose powder, CDs and cellulose/CDs phosphors[87]and (d) left: CNF alcogels with coupled CDs under normal light with a laser beam. Right: a schematic illustration showing inter-nanofiber bonds formed upon gel formation and the principle of EDC/NHS-mediated coupling of CDs onto the surfaces of i-CNF scaffolds after gelationn[88]. Reprinted with permission.

    Figure  6.  (a) Construction and characterization of the WLEDs based on oil-soluble yellow-green luminescent CDs: (a1) structural diagram, (a2) CIE color coordinates, (a3) lighting photo, and (a4) emission spectrum with upper right inset showing a real photo of the WLED lamp[99], (b) images of CD/PVP, PF10BT/PVP and PFTBT/PVP powder (b1) under daylight and UV light, and (b2) true-color images of WLEDs in different ratios of phosphors[51] and (c) the assembly of the LED device (c1), and (c2) emission spectrum of the LED[107]. Reprinted with permission.

    Figure  7.  (a) Fluorescence spectra with increasing temperature from 15 to 85 °C or (b) decreasing temperature from 85 to 15 °C, (c) eight cycles of intensity variations measured at 15–85 °C[111], (d) fluorescence images of films with increasing the temperature from 10 to 90 °C[112], (e) fluorescence intensity of the functional PVA film as a function of the oxygen concentrations for the emission centers of 310 nm, (f) reversibility of the functional PVA film for each emission center during three consecutive 0–21 kPa O2 cycles[120] and (g) emission spectra of CDs-PSi measured at different oxygen volume fractions (λex=366 nm)[123]. Reprinted with permission.

  • [1] Nair G B, Swart H C, Dhoble S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization[J]. Progress in Materials Science,2020,109:100622. doi: 10.1016/j.pmatsci.2019.100622
    [2] Tu C, Hoo J H, Hringer K F B O, et al. Red-emitting silicon quantum dot phosphors in warm white LEDs with excellent color rendering[J]. Optics Express,2014,22(S2):A276-A281. doi: 10.1364/OE.22.00A276
    [3] Erdem T, Demir H V. Semiconductor nanocrystals as rare-earth alternatives[J]. Nature Photonics,2011,5(3):126. doi: 10.1038/nphoton.2011.25
    [4] Kalytchuk S, Zhovtiuk O, Rogach A L. Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency[J]. Applied Physics Letters,2013,103(10):103105. doi: 10.1063/1.4820406
    [5] Yong K, Law W, Hu R, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies[J]. Chemical Society Review,2013,42:1236-1250. doi: 10.1039/C2CS35392J
    [6] Stromer B S, Kumar C V. White-emitting protein nanoparticles for cell-entry and pH sensing[J]. Advanced Functional Materials,2017,27(3):1603874. doi: 10.1002/adfm.201603874
    [7] Gotta J, Shalom T B, Aslanoglou S, et al. Stable white light-emitting biocomposite films[J]. Advanced Functional Materials,2018,28(24):1706967. doi: 10.1002/adfm.201706967
    [8] Shinde S, Asha S K. Temperature sensitive emission color tuning and white light emission in segmented OPV polymer: perylene bisimide supramolecular complex[J]. Macromolecules,2016,49(21):8134-8145. doi: 10.1021/acs.macromol.6b01708
    [9] Xu X, Zhang K, Zhao L, et al. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Applied Materials & Interfaces,2016,8(48):32706-32716.
    [10] Gao H, Sapelkin A V, Titirici M M, et al. In situ synthesis of fluorescent carbon dots/polyelectrolyte nanocomposite microcapsules with reduced permeability and ultrasound sensitivity[J]. ACS Nano,2016,10(10):9608-9615. doi: 10.1021/acsnano.6b05088
    [11] Zheng D, Li B, Li C, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting[J]. ACS Nano,2016,10(9):8715-8722. doi: 10.1021/acsnano.6b04156
    [12] Jiao J, Liu C, Li X, et al. Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging[J]. Journal of Colloid and Interface Science,2016,483:343-352. doi: 10.1016/j.jcis.2016.08.033
    [13] Zheng Z, Li J, Ma T, et al. Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures[J]. Light: Science & Applications,2017,6(10):e17057.
    [14] Ding H, Yu S, Wei J, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano,2016,10(1):484-491. doi: 10.1021/acsnano.5b05406
    [15] Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: Intracellular photoluminescence lifetime thermal sensing[J]. ACS Nano,2017,11(2):1432-1442.
    [16] Zhou D, Li D, Jing P, et al. Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process[J]. Chemistry of Materials,2017,29(4):1779-1787. doi: 10.1021/acs.chemmater.6b05375
    [17] Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [18] Sun Y, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [19] Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewandte Chemie International Edition,2010,49(38):6726-6744. doi: 10.1002/anie.200906623
    [20] Zhang Q, Sun X, Ruan H, et al. Production of yellow-emitting carbon quantum dots from fullerene carbon soot[J]. Science China-Materials,2017,60(2):141-150. doi: 10.1007/s40843-016-5160-9
    [21] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters,2012,12(2):844-849. doi: 10.1021/nl2038979
    [22] Hu S, Wei Z, Chang Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science,2016,378:402-407. doi: 10.1016/j.apsusc.2016.04.038
    [23] Cai T, Liu B, Pang E, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [24] Shao X, Wu W, Wang R, et al. Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation[J]. Journal of Catalysis,2016,344:236-241. doi: 10.1016/j.jcat.2016.09.006
    [25] Wu M, Wang Y, Wu W, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon,2014,78:480-489. doi: 10.1016/j.carbon.2014.07.029
    [26] Zhu Y, Wang Y, Gao C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials,2020,35(4):358-370. doi: 10.1016/S1872-5805(20)60494-2
    [27] Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Review,2015,44:362-381.
    [28] Hu X, Li Y, Xu Y, et al. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk[J]. Food Chemistry,2021,339:127775. doi: 10.1016/j.foodchem.2020.127775
    [29] Gudimella K K, Appidi T, Wu H, et al. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging[J]. Colloids and Surfaces B: Biointerfaces,2021,197:111362. doi: 10.1016/j.colsurfb.2020.111362
    [30] Sarswat P K, Free M L. Light emitting diodes based on carbon dots derived from food, beverage, and combustion wastes[J]. Physical Chemistry Chemical Physics,2015,17:27642-27652. doi: 10.1039/C5CP04782J
    [31] Singh A, Wolff A, Yambem S D, et al. Biowaste-Derived, Self-organized arrays of high-performance 2D carbon emitters for organic light-emitting diodes[J]. Advanced Materials,2020,32(10):1906176. doi: 10.1002/adma.201906176
    [32] Ma W, Wang N, Du Y, et al. Human-hair-derived N, S-doped porous carbon: An enrichment and degradation system for wastewater remediation in the presence of peroxymonosulfate[J]. ACS Sustainable Chemistry & Engineering,2019,7(2):2718-2727.
    [33] Atchudan R, Edison T N J I, Chakradhar D, et al. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications[J]. Sensors and Actuators B: Chemical,2017,246:497-509. doi: 10.1016/j.snb.2017.02.119
    [34] Bhamore J R, Jha S, Park T J, et al. Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells[J]. Journal of Photochemistry and Photobiology B: Biology,2019,191:150-155. doi: 10.1016/j.jphotobiol.2018.12.023
    [35] Atchudan R, Edison T N J I, Sethuraman M G, et al. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume[J]. Applied Surface Science,2016,384:432-441. doi: 10.1016/j.apsusc.2016.05.054
    [36] Gao X, Du C, Zhuang Z, et al. Carbon quantum dot-based nanoprobes for metal ion detection[J]. Journal of Materials Chemistry C,2016,4:6927-6945. doi: 10.1039/C6TC02055K
    [37] Sun M, Han Y, Yuan X, et al. Efficient full-color emitting carbon-dot-based composite phosphors by chemical dispersion[J]. Nanoscale,2020,12:15823-15831. doi: 10.1039/D0NR02021D
    [38] Meng T, Yuan T, Li X, et al. Ultrabroad-band, red sufficient, solid white emission from carbon quantum dot aggregation for single component warm white light emitting diodes with a 91 high color rendering index[J]. Chemical Communications,2019,55:6531-6534. doi: 10.1039/C9CC01794A
    [39] Yuan F, He P, Xi Z, et al. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays[J]. Nano Research,2019,12(7):1669-1674. doi: 10.1007/s12274-019-2420-x
    [40] Zhu S, Zhang J, Liu X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission[J]. RSC Advances,2012,2:2717-2720. doi: 10.1039/c2ra20182h
    [41] Mohan R, Drbohlavova J, Hubalek J. Dual band emission in carbon dots[J]. Chemical Physics Letters,2018,692:196-201. doi: 10.1016/j.cplett.2017.12.029
    [42] Sciortino A, Gazzetto M, Soriano M L, et al. Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation[J]. Physical Chemistry Chemical Physics,2019,21:16459-16467. doi: 10.1039/C9CP03063H
    [43] Lu S, Xiao G, Sui L, et al. Piezochromic carbon dots with two-photon fluorescence[J]. Angewandte Chemie International Edition,2017,56(22):6187-6191. doi: 10.1002/anie.201700757
    [44] Pan D, Guo L, Zhang J, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. Journal of Materials Chemistry,2012,22:3314-3318. doi: 10.1039/c2jm16005f
    [45] Zhu J, Tang Y, Wang G, et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation[J]. ACS Applied Materials & Interfaces,2017,9(16):14470-14477.
    [46] Wang Y, Kalytchuk S, Wang L, et al. Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices[J]. Chemical Communications,2015,51:2950-2953. doi: 10.1039/C4CC09589H
    [47] Barman B K, Nagao T, Nanda K K. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen[J]. Applied Surface Science,2020,510:145405. doi: 10.1016/j.apsusc.2020.145405
    [48] Müller M, Kaiser M, Stachowski G M, et al. Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals[J]. Chemistry of Materials,2014,26(10):3231-3237. doi: 10.1021/cm5009043
    [49] Wu Y, Zhang H, Pan A, et al. White-light-emitting melamine-formaldehyde microspheres through polymer-mediated aggregation and encapsulation of graphene quantum dots[J]. Advanced Science,2019,6(2):1801432. doi: 10.1002/advs.201801432
    [50] Hu G, Sun Y, Zhuang J, et al. Enhancement of fluorescence emission for tricolor quantum dots assembled in polysiloxane toward solar spectrum-simulated white light-emitting devices[J]. Small,2020,16(1):1905266. doi: 10.1002/smll.201905266
    [51] Sun C, Zhang Y, Sun K, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes[J]. Nanoscale,2015,7:12045-12050. doi: 10.1039/C5NR03014E
    [52] Luk C M, Chen B L, Teng K S, et al. Optically and electrically tunable graphene quantum dot–polyaniline composite films[J]. Journal of Materials Chemistry C,2014,2:4526-4532. doi: 10.1039/C4TC00498A
    [53] Wang Y, Zhao Y, Zhang F, et al. Fluorescent polyvinyl alcohol films based on nitrogen and sulfur co-doped carbon dots towards white light-emitting devices[J]. New Journal of Chemistry,2016,40:8710-8716. doi: 10.1039/C6NJ01753C
    [54] Li Q, Guo Z, Zhao X, et al. One-pot synthesis of 2, 2(textquotesingle)-dipicolylamine derived highly photoluminescent nitrogen-doped carbon quantum dots for Fe3+ mathplus detection and fingermark detection[J]. Nanotechnology,2020,31(33):335501. doi: 10.1088/1361-6528/ab8f4b
    [55] El-Shamy A G. Novel conducting PVA/Carbon quantum dots (CQDs) nanocomposite for high anti-electromagnetic wave performance[J]. Journal of Alloys and Compounds,2019,810:151940. doi: 10.1016/j.jallcom.2019.151940
    [56] El-Shamy A G. Novel hybrid nanocomposite based on Poly(vinyl alcohol)/ carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications[J]. Composites Part B: Engineering,2019,174:106993. doi: 10.1016/j.compositesb.2019.106993
    [57] Joseph J, Anappara A A. White light emission of carbon dots by creating different emissive traps[J]. Journal of Luminescence,2016,178:128-133. doi: 10.1016/j.jlumin.2016.05.051
    [58] Jia H, Wang Z, Yuan T, et al. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J]. Advanced Science,2019,6(13):1900397. doi: 10.1002/advs.201900397
    [59] Wang Q, Zhang S, Wang B, et al. Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots[J]. Nanoscale Horizons,2019,4:1227-1231. doi: 10.1039/C9NH00287A
    [60] Tan J, Zou R, Zhang J, et al. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix[J]. Nanoscale,2016,8:4742-4747. doi: 10.1039/C5NR08516K
    [61] Sun M, Qu S, Hao Z, et al. Towards efficient solid-state photoluminescence based on carbon-nanodots and starch composites[J]. Nanoscale,2014,6:13076-13081. doi: 10.1039/C4NR04034A
    [62] You Y, Zhang H, Liu Y, et al. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots[J]. Carbohydrate Polymers,2016,151:245-250. doi: 10.1016/j.carbpol.2016.05.063
    [63] Li W, Zhang H, Zheng Y, et al. Multifunctional carbon dots for highly luminescent orange-emissive cellulose based composite phosphor construction and plant tissue imaging[J]. Nanoscale,2017,9:12976-12983. doi: 10.1039/C7NR03217J
    [64] Otto T, Müller M, Mundra P, et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity[J]. Nano Letters,2012,12(10):5348-5354. doi: 10.1021/nl3027444
    [65] Kim T H, Wang F, McCormick P, et al. Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes[J]. Journal of Luminescence,2014,154:1-7. doi: 10.1016/j.jlumin.2014.04.002
    [66] Guo S, Yang M, Chen M, et al. Bioinspired synthesis of fluorescent calcium carbonate/carbon dot hybrid composites[J]. Dalton Transactions,2015,44:8232-8237. doi: 10.1039/C5DT00837A
    [67] Liang J, Yang B, Zhong C, et al. A rapid in situ synthesis of wide-spectrum CD@BaCl2 phosphors via anti-solvent recrystallization for white LEDs[J]. Inorganic Chemistry Frontiers,2020,7:4845-4853. doi: 10.1039/D0QI01054E
    [68] Green D C, Holden M A, Levenstein M A, et al. Controlling the fluorescence and room-temperature phosphorescence behavior of carbon nanodots with inorganic crystalline nanocomposites[J]. Nature Communications,2019,10(1):206. doi: 10.1038/s41467-018-08214-6
    [69] Liu J, Wang N, Yu Y, et al. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes[Z]. American Association for the Advancement of Science, 2017: 3.
    [70] Dong X, Wei L, Su Y, et al. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix[J]. Journal of Materials Chemistry C,2015,3:2798-2801. doi: 10.1039/C5TC00126A
    [71] Matthews B W. Solvent content of protein crystals[J]. Journal of Molecular Biology,1968,33(2):491-497. doi: 10.1016/0022-2836(68)90205-2
    [72] Abe S, Ueno T. Design of protein crystals in the development of solid biomaterials[J]. RSC Advances,2015,5:21366-21375. doi: 10.1039/C4RA16748A
    [73] Falkner J C, Turner M E, Bosworth J K, et al. Virus crystals as nanocomposite scaffolds[J]. Journal of the American Chemical Society,2005,127(15):5274-5275. doi: 10.1021/ja044496m
    [74] Sun G, Tang J, Snow C D, et al. Drug sensing protein crystals doped with luminescent lanthanide complexes[J]. Crystal Growth & Design,2019,19(10):5658-5664.
    [75] Liu M, Wang L, Huang R, et al. Superior catalytic performance of gold nanoparticles within small cross-linked lysozyme crystals[J]. Langmuir,2016,32(42):10895-10904. doi: 10.1021/acs.langmuir.6b02544
    [76] H Wei, S House, J Wu, et al. Cross-linked protein crystals by glutaraldehyde and their applications[J]. Nano Research,2013,6:627-634. doi: 10.1007/s12274-013-0348-0
    [77] England M W, Patil A J, Mann S. Synthesis and confinement of carbon dots in lysozyme single crystals produces ordered hybrid materials with tunable luminescence[J]. Chemistry-A European Journal,2015,21(25):9008-9013. doi: 10.1002/chem.201501429
    [78] Dager A, Baliyan A, Kurosu S, et al. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals[J]. Scientific Reports,2020,10(1):12333. doi: 10.1038/s41598-020-69264-9
    [79] Shengju Z, Dandan L, Xiaofeng S, et al. One-pot synthesis of metal-free, yellow-emitting phosphor with organic single crystal as a matrix[J]. Dyes and Pigments, Doi: 10.1016/j.dyepig.2021.109518.
    [80] Chen Y, Zheng M, Xiao Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-State fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Advanced Materials,2016,28(2):312-318. doi: 10.1002/adma.201503380
    [81] Chen Y, He J, Hu C, et al. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates[J]. Journal of Materials Chemistry C,2017,5:6243-6250. doi: 10.1039/C7TC01615H
    [82] Zhu J, Bai X, Chen X, et al. Spectrally tunable solid-state fluorescence and room-temperature phosphorescence of carbon dots synthesized via seeded growth method[J]. Advanced Optical Materials,2019,7(9):1801599. doi: 10.1002/adom.201801599
    [83] Wang F, Xie Z, Zhang H, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Advanced Functional Materials,2011,21(6):1027-1031. doi: 10.1002/adfm.201002279
    [84] Wang Y, Kalytchuk S, Zhang Y, et al. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel[J]. The Journal of Physical Chemistry Letters,2014,5(8):1412-1420. doi: 10.1021/jz5005335
    [85] Chen Y, Lei B, Zheng M, et al. A dual-emitting core–shell carbon dot–silica–phosphor composite for white light emission[J]. Nanoscale,2015,7:20142-20148. doi: 10.1039/C5NR05637C
    [86] Tan J, Ye Y, Ren X, et al. High pH-induced efficient room-temperature phosphorescence from carbon dots in hydrogen-bonded matrices[J]. Journal of Materials Chemistry C,2018,6:7890-7895. doi: 10.1039/C8TC02012D
    [87] You Y, Zhang H, Liu Y, et al. Solid-state fluorescent composite phosphor based on cellulose grafted with carbon dots for temperature sensing[J]. RSC Advances,2016,6:90126-90131. doi: 10.1039/C6RA14968E
    [88] Quraishi S, Plappert S F, Grießer T, et al. Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels[J]. Cellulose,2019,26(13):7781-7796.
    [89] Wang C, Hu T, Chen Y, et al. Polymer-assisted self-assembly of multicolor carbon dots as solid-state phosphors for fabrication of warm, high-quality, and temperature-responsive white-light-emitting devices[J]. ACS Applied Materials & Interfaces,2019,11(25):22332-22338.
    [90] Tian Z, Zhang X, Li D, et al. Full-color inorganic carbon dot phosphors for white-light-emitting diodes[J]. Advanced Optical Materials,2017,5(19):1700416. doi: 10.1002/adom.201700416
    [91] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device[Z]. American Association for the Advancement of Science, 1995: 267, 1332-1334.
    [92] Ying L, Ho C, Wu H, et al. White polymer light-emitting devices for solid-state lighting: Materials, devices, and recent progress[J]. Advanced Materials,2014,26(16):2459-2473. doi: 10.1002/adma.201304784
    [93] Sasabe H, Kido J. Development of high performance OLEDs for general lighting[J]. Journal of Materials Chemistry C,2013,1:1699-1707. doi: 10.1039/c2tc00584k
    [94] Pust P, Weiler V, Hecht C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material[J]. Nature Materials,2014,13(9):891-896. doi: 10.1038/nmat4012
    [95] Zhang F, Feng X, Zhang Y, et al. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs[J]. Nanoscale,2016,8:8618-8632. doi: 10.1039/C5NR08838K
    [96] Dai P, Li C, Zhang X, et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes[J]. Light: Science & Applications,2016,5(2):e16024.
    [97] Li X, Liu Y, Song X, et al. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes[J]. Angewandte Chemie International Edition,2015,54(6):1759-1764. doi: 10.1002/anie.201406836
    [98] Zhai Y, Wang Y, Di Li, et al. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J]. Journal of Colloid and Interface Science,2018,528:281-288. doi: 10.1016/j.jcis.2018.05.101
    [99] Wang Q, Gao Y, Wang B, et al. S, N-Co doped oil-soluble fluorescent carbon dots for a high color-rendering WLED[J]. Journal of Materials Chemistry C,2020,8:4343-4349. doi: 10.1039/D0TC00016G
    [100] Zhang F, Wang Y, Miao Y, et al. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device[J]. Applied Physics Letters,2016,109(8):83103. doi: 10.1063/1.4961631
    [101] Tian Z, Tian P, Zhou X, et al. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication[J]. Nanoscale,2019,11:3489-3494. doi: 10.1039/C9NR00224C
    [102] Yuan T, Yuan F, Li X, et al. Fluorescence–phosphorescence dual emissive carbon nitride quantum dots show 25% white emission efficiency enabling single-component WLEDs[J]. Chemical Science,2019,10:9801-9806. doi: 10.1039/C9SC03492G
    [103] Chen L, Chen X, Liu F, et al. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs[J]. Scientific Reports,2015,5(1):11514. doi: 10.1038/srep11514
    [104] Yuan F, Yuan T, Sui L, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications,2018,9(1):2249. doi: 10.1038/s41467-018-04635-5
    [105] Li S, Zhou S, Li Y, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy[J]. ACS Applied Materials & Interfaces,2017,9(27):22332-22341.
    [106] Fan Z, Zhou S, Garcia C, et al. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis[J]. Nanoscale,2017,9:4928-4933. doi: 10.1039/C7NR00888K
    [107] Gu S, Hsieh C, Ashraf Gandomi Y, et al. Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots[J]. Nanoscale,2019,11:16553-16561. doi: 10.1039/C9NR05422G
    [108] Wu Y, Liu J, Wang Y, et al. Novel ratiometric fluorescent nanothermometers based on fluorophores-labeled short single-stranded DNA[J]. ACS Applied Materials & Interfaces,2017,9(12):11073-11081.
    [109] Yang J, Liu Y, Zhao Y, et al. Ratiometric afterglow nanothermometer for simultaneous in situ bioimaging and local tissue temperature sensing[J]. Chemistry of Materials,2017,29(19):8119-8131. doi: 10.1021/acs.chemmater.7b01958
    [110] Rocha U, Jacinto Da Silva C, Ferreira Silva W, et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles[J]. ACS Nano,2013,7(2):1188-1199. doi: 10.1021/nn304373q
    [111] Wang C, Hu T, Thomas T, et al. Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry[J]. Nanoscale,2018,10:21809-21817. doi: 10.1039/C8NR07445C
    [112] Jiang Y, Zhang X, Xiao L, et al. Preparation of dual-emission polyurethane/carbon dots thermoresponsive composite films for colorimetric temperature sensing[J]. Carbon,2020,163:26-33. doi: 10.1016/j.carbon.2020.03.013
    [113] Li W, Zhang H, Chen S, et al. Preparation and properties of carbon dot-grafted CaAl12O19:Mn4+ color-tunable hybrid phosphor[J]. Advanced Optical Materials,2016,4(3):427-434. doi: 10.1002/adom.201500572
    [114] Zhang L, Lyu S, Zhang Q, et al. Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing[J]. Carbohydrate Polymers,2019,206:767-777. doi: 10.1016/j.carbpol.2018.11.031
    [115] Papkovsky D B, Dmitriev R I. Biological detection by optical oxygen sensing[J]. Chemical Society Review,2013,42:8700-8732. doi: 10.1039/c3cs60131e
    [116] Toncelli C, Arzhakova O V, Dolgova A, et al. Oxygen-sensitive phosphorescent nanomaterials produced from high-density polyethylene films by local solvent-crazing[J]. Analytical Chemistry,2014,86(3):1917-1923. doi: 10.1021/ac404072z
    [117] Toncelli C, Arzhakova O V, Dolgova A, et al. Phosphorescent oxygen sensors produced by spot-crazing of polyphenylenesulfide films[J]. Journal of Materials Chemistry C,2014,2:8035-8041. doi: 10.1039/C4TC01390E
    [118] Kelly C A, Toncelli C, Kerry J P, et al. Discrete O2 sensors produced by a spotting method on polyolefin fabric substrates[J]. Sensors and Actuators B: Chemical,2014,203:935-940. doi: 10.1016/j.snb.2014.06.103
    [119] Kelly C A, Toncelli C, Cruz-Romero M, et al. Phosphorescent O2 sensors integrated in polymeric film materials by local solvent crazing[J]. Materials & Design,2015,77:110-113.
    [120] Armagan E, Thiyagarajan S, Wei K, et al. Reversible oxygen sensing based on multi-emission fluorescence quenching[J]. Sensors,2020,20(2):477. doi: 10.3390/s20020477
    [121] Yan X, Li H, Li Y, et al. Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots[J]. Analytica Chimica Acta,2014,852:189-195. doi: 10.1016/j.aca.2014.09.008
    [122] Lei B, Wang L, Zhang H, et al. Luminescent carbon dots assembled SBA-15 and its oxygen sensing properties[J]. Sensors and Actuators B: Chemical,2016,230:101-108. doi: 10.1016/j.snb.2016.01.037
    [123] Wang L, Zhang H, Zhou X, et al. Preparation and characterization of a luminescent carbon dots grafted CaSiO3:Eu3+ phosphor for ratiometric fluorescent oxygen sensing[J]. RSC Advances,2016,6:98554-98562. doi: 10.1039/C6RA20380A
    [124] Jiang L, Ding H, Lu S, et al. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior[J]. Angewandte Chemie International Edition,2020,59:9986-9991. doi: 10.1002/anie.201913800
    [125] Liu C, Xiao G, Yang M, et al. Mechanofluorochromic carbon nanodots: controllable pressure-triggered blue- and red-shifted photoluminescence[J]. Angewandte Chemie International Edition,2018,57(7):1893-1897. doi: 10.1002/anie.201711409
    [126] Zhan Y, Geng T, Liu Y, et al. Near-ultraviolet to near-infrared fluorescent nitrogen-doped carbon dots with two-photon and piezochromic luminescence[J]. ACS Applied Materials & Interfaces,2018,10(33):27920-27927.
    [127] Jing P, Han D, Li D, et al. Surface related intrinsic luminescence from carbon nanodots: solvent dependent piezochromism[J]. Nanoscale Horiz.,2019,4:175-181. doi: 10.1039/C8NH00258D
    [128] Cao Y, Qi G, Liu C, et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals[J]. The Journal of Physical Chemistry C,2018,122(17):9332-9338. doi: 10.1021/acs.jpcc.8b01673
  • 加载中
图(8)
计量
  • 文章访问数:  1736
  • HTML全文浏览量:  1182
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-13
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回