Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction
-
摘要: 由于其高含量的面内氮元素、优异的化学和热力学稳定性、可调的电子能带结构和环境友好的特点,石墨相结构的氮化碳(g-C3N4)材料作为一种非金属催化剂在光电催化领域已引起广泛关注。相较于光催化领域能带结构的调控,g-C3N4在电催化领域的设计主要集中在活性位点的构筑和电子转移能力的调节。本文报道了一种三价Al3+离子电化学插层超快制备超细g-C3N4量子点(QDs)的剥离策略,与传统的碱金属离子相比,Al3+带电荷量大、冲击能力强,易于得到粒径和厚度更小的均一量子点材料。相应的透射电镜(TEM),原子力显微镜(AFM)和紫外吸收光谱仪(UV-vis)表征证实了所制g-C3N4 QDs的平均粒径只有3.5 nm,厚度只有3个C―N原子层(~1 nm),并且富含C/N缺陷。这种超细且富含缺陷的量子点材料在0.5 mol L−1 H2SO4电解液中具有接近0 V的电催化析氢(HER)开口电位、优异的过电位(η10=208 mV)和较低的塔菲尔斜率(b=52 mV·dec−1)。这项工作提出的快速制备富含C/N缺陷g-C3N4 QDs的策略也为研究其它二维层状材料的剥离及其在电催化领域的应用提供了一条有趣的研究思路,有利于发掘二维材料更多丰富的物化性质。Abstract: Because of its high concentration of in-plane elemental nitrogen, superior chemical/thermal stability, tunable electronic band structure and environmentally friendly nature, graphite-like carbon nitride (g-C3N4) is a new promising metal-free material that has drawn much attention in photo-/electric catalysis. Compared with the regulation of the band structure in photocatalysis, the deliberate synthesis of g-C3N4 electrocatalysts is mainly focused on the construction of catalytic sites and the modulation of the charge transfer kinetics. This work reports a rapid method for synthesizing ultrafine g-C3N4 quantum dots (QDs) by electrochemical exfoliation using Al3+ ions as an intercalation agent. Uniform g-C3N4 QDs with small lateral size and thickness were collected more easily due to the higher charge density and stronger electrostatic force of Al3+ ions in the lattice of the host material, compared to conventional univalent alkali cations. The QDs had an average lateral dimension and thickness of 3.5 nm and 1.0 nm, respectively, as determined by TEM and AFM measurements. The presence of a large number of C/N defects was verified by the UV-vis spectra. The ultrafine g-C3N4 QDs had a superior hydrogen evolution reaction performance with an ultra-low onset-potential approaching 0 V, and a low overpotential of 208 mV at 10 mA cm−2, as well as a remarkably low Tafel slope (52 mV·dec−1) in an acidic electrolyte.
-
Key words:
- g-C3N4 /
- Electrochemical exfoliation /
- Al3+ ions /
- QDs /
- HER
-
Figure 1. (a) Schematic illustration of the electrochemical intercalation of Al3+ cations into the interlayer of bulk g-C3N4 materials. (b) The extraction of Al3+ ions wrapped by oleic acid molecules from the g-C3N4 lattice for the fabrication of the ultrafine g-C3N4 QDs by the sonication process. (c) Typical optical images of bulk g-C3N4 and g-C3N4 QDs.
Figure 2. (a) XRD patterns of bulk g-C3N4 and g-C3N4 QDs. (b)TEM image of g-C3N4 QDs, with the corresponding SAED pattern in the insert. (c) EDS image of g-C3N4 QDs. (d) Statistic analysis of the lateral dimension of the as-obtained g-C3N4 QDs. (e) HRTEM image of g-C3N4 QDs. (f) AFM image of g-C3N4 QDs. (g) Thickness of g-C3N4 QDs highlighted in line 1 and line 2 in (f).
Figure 4. (a) Polarization (LSV) curves and (b) Tafel plots for as-obtained g-C3N4 QDs, bulk material and benchmark Pt/C at a scan rate of 5 mV s−1 in 0.5 mol L−1 H2SO4 solutions. (c) Comparison of the HER performance obtained from g-C3N4 QDs and other previous reports. (d) Nyquist plots and (e) chronopotentiometry measurements of g-C3N4 QDs and bulk material.
Table 1. A comparison of the merits and demerits of different g-C3N4 QDs preparation methods.
Methods Particle size(nm) Thickness(nm) Advantages Disadvantages Ref. Sonication method Below 10 5–6 Simple procedures and facile operation Low yield and long circle [35,36] Sonication along with
chemical oxidation4 0.35 High yield and high purity High cost and complex operation [37,38] Hydrothermal method 3.3 2 Simple procedures and low cost Low yield and long circles [39,40] Hydrothermal along with chemical oxidation 5-9 Below 10 High yield and high purity High cost and complex operation [41,42] Solid-phase method 4.3 1.5–2.5 High yield Complex purification and long circles [43,44] Microwave-assisted solvothermal method 1-5 - Simple procedures, short circles
and low costLow quantum yield [45,46] Quasi-chemical vapor
deposition (CVD) method2.4 - Closely integrated Energy-consuming and
complex purification[47] Electrochemical exfoliation 3.5 1 Simple procedures, facile operation, short circles, high yield and high purity No more experimental exploration
for the intercalation mechanismThis work -
[1] Zhang J, Wang T, Liu P, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications,2017,8:15437. doi: 10.1038/ncomms15437 [2] Gong Q F, Wang Y, Hu Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications,2016,7:13216. doi: 10.1038/ncomms13216 [3] Wang J, Xu F, Jin H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Advanced Materials,2017,29(14):1605838. doi: 10.1002/adma.201605838 [4] Chen Z Y, Song Y, Cai J Y, et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis[J]. Angewandte Chemie-International Edition,2018,57(18):5076-5080. doi: 10.1002/anie.201801834 [5] Han N N, Yang K R, Lu Z Y, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid[J]. Nature Communications,2018,9:924. doi: 10.1038/s41467-018-03429-z [6] Zheng Z X, Lu R T, Huang Z H, et al. Carbon materials for use in the electrocatalytic hydrogen evolution reaction[J]. New Carbon Materials,2019,34(2):115-131. [7] Hu C L, Zhang L, Gong J L. Recent progress of mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy Environmental Science,2019,12(9):2620-2645. doi: 10.1039/C9EE01202H [8] Luo Y T, Li X, Cai X K, et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes[J]. ACS Nano,2018,12(5):4565-4573. doi: 10.1021/acsnano.8b00942 [9] Yan Y, Xia B Y, Zhao B, et al. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. Journal of Materials Chemistry A,2016,4(45):17587-17603. doi: 10.1039/C6TA08075H [10] Ye X W, Hu L B, Liu M C, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6 [11] Zhang J, Chen G B, Müllen K, et al. Carbon-rich nanomaterials: Fascinating hydrogen and oxygen electrocatalysts[J]. Advanced Materials,2018,30(40):1800528. doi: 10.1002/adma.201800528 [12] Rao C N R, Chhetri M. Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction[J]. Advanced Materials,2019,31(13):1803668. doi: 10.1002/adma.201803668 [13] Zheng Y, Jiao Y, Zhu Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications,2014,5:3783. doi: 10.1038/ncomms4783 [14] Zhao Y, Zhao F, Wang X P, et al. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution[J]. Angewandte Chemie-International Edition,2014,53(50):13934-13939. doi: 10.1002/anie.201409080 [15] Pei Z X, Zhao J X, Huang Y, et al. Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping[J]. Journal of Materials Chemistry A,2016,4(31):12205-12211. doi: 10.1039/C6TA03588D [16] Chen W S, Gu J J, Liu Q L, et al. Quantum dots of 1T phase transitional metal dichalcogenides generated via electrochemical Li intercalation[J]. ACS Nano,2018,12(1):308-316. doi: 10.1021/acsnano.7b06364 [17] Yin X Y, Yan Y, Miao M, et al. Quasi-emulsion confined synthesis of edge-rich ultrathin MoS2 nanosheets/graphene hybrid for enhanced hydrogen evolution[J]. Chemistry-A European Journal,2018,24(3):556-560. doi: 10.1002/chem.201703493 [18] Zeng Z Y, Sun T, Zhu J X, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angewandte Chemie-International Edition,2012,51(36):9052-9056. doi: 10.1002/anie.201204208 [19] Zhang X D, Xie X, Wang H, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society,2013,135(1):18-21. doi: 10.1021/ja308249k [20] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294-303. doi: 10.1038/nature11475 [21] Cong S, Tian Y Y, Li Q W, et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications[J]. Advanced Materials,2014,26(25):4260-4267. doi: 10.1002/adma.201400447 [22] Wang T, Nie C Y, Ao Z M, et al. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants[J]. Journal of Materials Chemistry A,2020,8(2):485-502. doi: 10.1039/C9TA11368A [23] Chen Z G, Tao Z X, Cong S, et al. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection[J]. Chemical Communications,2016,52(76):11442-11445. doi: 10.1039/C6CC06325J [24] Zhang X, Luo Z M, Yu P, et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution[J]. Nature Catalysis,2018,1(6):460-468. doi: 10.1038/s41929-018-0072-y [25] Ren X P, Pang L Q, Zhang Y X, et al. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2015,3(20):10693-10697. doi: 10.1039/C5TA02198G [26] Chen Z G, Li L H, Cong S, et al. Rapid synthesis of sub-5 nm sized cubic boron nitride nanocrystals with high-piezoelectric behavior via electrochemical shock[J]. Nano Letters,2017,17(1):355-361. doi: 10.1021/acs.nanolett.6b04272 [27] Bian J Y, An X Q, Jiang W, et al. Defect-enhanced activation of carbon nitride/horseradish peroxidase nanohybrids for visible-light-driven photobiocatalytic water purification[J]. Chemical Engineering Journal,2021,408:127231. doi: 10.1016/j.cej.2020.127231 [28] Wu Y X, Liu L M, An X Q, et al. New insights into interfacial photocharge transfer in TiO2/C3N4 heterostructures: Effects of facets and defects[J]. New Journal of Chemistry,2019,43(11):4511-4517. doi: 10.1039/C9NJ00027E [29] Ahsan M A, He T W, Eid K, et al. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry[J]. Journal of the American Chemical Society,2021,143(2):1203-1215. doi: 10.1021/jacs.0c12386 [30] Suragtkhuu S, Bat-Erdene M, Bati A S R, et al. Few-layer black phosphorus and boron-doped graphene based heteroelectrocatalyst for enhanced hydrogen evolution[J]. Journal of Materials Chemistry A,2020,8(39):20446-20452. doi: 10.1039/D0TA07659G [31] Deng B L, Wang D, Jiang Z Q, et al. Amine group induced high activity of highly torn amine functionalized nitrogen-doped graphene as the metal-free catalyst for hydrogen evolution reaction[J]. Carbon,2018,138:169-178. doi: 10.1016/j.carbon.2018.06.008 [32] Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications,2015,6:6512. doi: 10.1038/ncomms7512 [33] Deng S J, Yang F, Zhang Q H, et al. Phase modulation of (1T-2H)-MoSe2/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction[J]. Advanced Materials,2018,33(34):1802223. [34] Zhu J, Hu L S, Zhao P X, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews,2020,120(2):851-918. doi: 10.1021/acs.chemrev.9b00248 [35] Wang H, Yuan X Z, Wang H, et al. Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance[J]. Applied Catalysis B-Environmental,2016,193:36-46. doi: 10.1016/j.apcatb.2016.03.075 [36] Cui Q L, Xu J S, Wang X Y, et al. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior[J]. Angewandte Chemie-International Edition,2016,55(11):3672-3676. doi: 10.1002/anie.201511217 [37] Wang X P, Wang L X, Zhao F, et al. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction[J]. Nanoscale,2015,7(7):3035-3042. doi: 10.1039/C4NR05343E [38] Zhang X D, Wang H X, Wang H, et al. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus[J]. Advanced Materials,2014,26(26):4438. doi: 10.1002/adma.201400111 [39] Chen X, Liu Q, Wu Q L, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Functional Materials,2016,26(11):1719-1728. doi: 10.1002/adfm.201505321 [40] Zhan Y, Liu Z M, Liu Q Q, et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications[J]. New Journal of Chemistry,2017,41(10):3930-3938. doi: 10.1039/C7NJ00058H [41] Song Z P, Lin T R, Lin L H, et al. Invisible security ink based on water-Soluble graphitic carbon nitride quantum dots[J]. Angewandte Chemie-International Edition,2016,55(8):2773-2777. doi: 10.1002/anie.201510945 [42] Wang W, Yu J C, Shen Z, et al. g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications,2014,50(70):10148-10150. doi: 10.1039/C4CC02543A [43] Bai G Y, Song Z P, Geng H Y, et al. Oxidized quasi-carbon nitride quantum dots inhibit ice growth[J]. Advanced Materials,2017,29(28):1606843. doi: 10.1002/adma.201606843 [44] Zhou J, Yang Y, Zhang C Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission[J]. Chemical Communications,2013,49(77):8605. doi: 10.1039/c3cc42266f [45] Barman S, Sadhukhan M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media[J]. Journal of Materials Chemistry,2012,22(41):21832-21837. doi: 10.1039/c2jm35501a [46] Liu S, Tian J Q, Wang L, et al. Preparation of photoluminescent carbon nitride dots from CCl4 and 1, 2-ethylenediamine: a heat-treatment-based strategy[J]. Journal of Materials Chemistry,2011,21(32):11726-11729. doi: 10.1039/c1jm12149a [47] Li G S, Lian Z L, Wang W C, et al. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy,2016,19:446-454. doi: 10.1016/j.nanoen.2015.10.011 -