留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coal-based graphene as a promoter of TiO2 for photocatalytic degradation of organic dyes

LIU Guo-yang LI Ke-ke JIA Jia ZHANG Ya-ting

刘国阳, 李可可, 贾嘉, 张亚婷. 煤基石墨烯促进TiO2光催化降解有机物[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60047-1
引用本文: 刘国阳, 李可可, 贾嘉, 张亚婷. 煤基石墨烯促进TiO2光催化降解有机物[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60047-1
LIU Guo-yang, LI Ke-ke, JIA Jia, ZHANG Ya-ting. Coal-based graphene as a promoter of TiO2 for photocatalytic degradation of organic dyes[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60047-1
Citation: LIU Guo-yang, LI Ke-ke, JIA Jia, ZHANG Ya-ting. Coal-based graphene as a promoter of TiO2 for photocatalytic degradation of organic dyes[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60047-1

煤基石墨烯促进TiO2光催化降解有机物

doi: 10.1016/S1872-5805(21)60047-1

Coal-based graphene as a promoter of TiO2 for photocatalytic degradation of organic dyes

Funds: This work was kindly supported by Open Fund Project of National Engineering Research Center of Coal Preparation and Purification (2018NERCCPP-B06), National Natural Science Foundation of China-Coal based low carbon joint Foundation of Shanxi Province (U1810113) and Natural Science Foundation of Shaanxi Province (2019JLP-12).
More Information
  • 摘要: 石墨烯协同TiO2光催化降解有机物是一种很有前景的解决水体污染问题的方法。本文以低成本煤炭作为石墨烯碳源,成功地制备了TiO2-石墨烯复合催化剂。利用扫描电子显微镜、原子力显微镜、X射线衍射和拉曼光谱等研究了TiO2-石墨烯复合催化剂的微观结构和形貌。煤基石墨烯的引入促进了TiO2光催化降解有机物的反应。特别是在水热还原法制备的TiO2-石墨烯催化剂中,TiO2堆积在石墨烯片层结构上形成层状结构。由于石墨烯的引入,复合催化剂表现出良好的导电性和光电响应特性,并展示出较高的光催化活性。
  • Figure  1.  (a) XRD patterns of TiO2, GO and composite catalysts, (b) Raman spectra of TiO2 and composite catalysts, (c) FT-IR spectra of TiO2, rGO and catalyst catalysts, and the (d) Ti 2p, (e) O 1s, and (f) C 1s XPS spectra of H-TiO2@rGO.

    Figure  2.  SEM images of (a) H-TiO2@rGO, (b) M-TiO2@rGO, (c) M-TiO2@GO, (d) GO; (e) AFM images and (f) H-TiO2@rGO.

    Figure  3.  N2 adsorption-desorption isotherms of the TiO2 and its composite samples.

    Figure  4.  Adsorption-equilibrium and photocatalytic-degradation curves for (a) Rh B, (b) MO solutions over various catalysts, and first-order kinetics plots of (c) Rh B, (d) MO degradation over various catalysts, and cycle degradation experiments (e) Rh B and (f) MO over the H-TiO2@rGO catalyst.

    Figure  5.  (a) Diffuse reflectance absorption spectra, (b) Band-gap energy plots, (c) Transient photocurrent curves, and (d) EIS changes of TiO2 and TiO2-rGO composites.

    Figure  6.  Suggested mechanism of decomposition of Rh-B and MO through photodegradation by TiO2@rGO composites.

    Table  1.   Pore parameters of the catalysts.

    SamplesSBET
    (m2 g−1)
    Total pore volume
    (mL g−1)
    Average pore diameter (nm)
    TiO229.610.5269.70
    H-TiO2@rGO35.890.5134.18
    M-TiO2@GO35.520.6135.00
    M-TiO2@rGO34.300.5435.24
    下载: 导出CSV

    Table  2.   Reaction rate constants of the photocatalysts.

    Samplesk (Rh B)k (MO)
    TiO20.002670.00320
    H-TiO2@rGO0.013320.01481
    M-TiO2@GO0.005540.00571
    M-TiO2@rGO0.009980.01031
    下载: 导出CSV
  • [1] Chen L, Caro F, Corbett C J, et al. Estimating the environmental and economic impacts of widespread adoption of potential technology solutions to reduce water use and pollution: Application to China's textile industry[J]. Environmental Impact Assessment Review,2019,79:106293. doi: 10.1016/j.eiar.2019.106293
    [2] Han D, Currell M J, Cao G. Deep challenges for China's war on water pollution[J]. Environmental Pollution,2016,218:1222-1233. doi: 10.1016/j.envpol.2016.08.078
    [3] Chenab K K, Sohrabi B, Jafari A, et al. Water treatment: Functional nanomaterials and applications from adsorption to photodegradation[J]. Materials Today Chemistry,2020,16:100262. doi: 10.1016/j.mtchem.2020.100262
    [4] Selvaraja M, Hai A, Banat F, et al. Application and prospects of carbon nanostructured materials in water treatment: A review[J]. Journal of Water Process Engineering,2020,33:100996. doi: 10.1016/j.jwpe.2019.100996
    [5] Riaz S, Park S Jin. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments[J]. Journal of industrial and engineering chemistry,2020,84:23-41. doi: 10.1016/j.jiec.2019.12.021
    [6] Gusain R, Gupta K, Joshi P, et al. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: A comprehensive review[J]. Advances in Colloid and Interface Science,2019,272:102009. doi: 10.1016/j.cis.2019.102009
    [7] Varma K S, Tayade R J, Shah K J, et al. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review[J]. Water-Energy Nexus,2020,3:46-61. doi: 10.1016/j.wen.2020.03.008
    [8] Lee S Y, Park S J. TiO2 photocatalyst for water treatment applications[J]. Journal of industrial and engineering chemistry,2013,19:1761-1769. doi: 10.1016/j.jiec.2013.07.012
    [9] Chen D, Cheng Y, Zhou N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review[J]. journal of cleaner production,2020,268:121725. doi: 10.1016/j.jclepro.2020.121725
    [10] Dong H, Zeng G, Tang L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research,2015,79:128-146. doi: 10.1016/j.watres.2015.04.038
    [11] Hoang V, Hassan M, Gomes V. Coal derived carbon nanomaterials – Recent advances in synthesis andapplications[J]. Applied Materials Today,2018,12:342-358. doi: 10.1016/j.apmt.2018.06.007
    [12] Das T, Boruah P K, Das M R, et al. Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: Application in photocatalytic degradation of 2-nitrophenol[J]. RSC Advances,2016,6:35177-35190. doi: 10.1039/C6RA04392E
    [13] Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (II) detection[J]. ACS Sustainable Chemistry & Engineering,2019,7:9793-9799. doi: 10.1021/acssuschemeng.8b06792
    [14] Qu J, Shi L, He C, et al. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue[J]. Carbon,2014,66:485-492. doi: 10.1016/j.carbon.2013.09.025
    [15] Meng L, Sun Y, Gong H, et al. Research progress of the application of graphene-based materials in the treatment of water pollutants[J]. New Carbon Materials,2019,44:220-237.
    [16] Zhang Y. Preparation, modification and application of coal-based-graphene [D]. Xi’an University of Science and Technology, 2015.
    [17] Gao F, Qu J, Zhao Z, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application[J]. Carbon,2014,80:640-650. doi: 10.1016/j.carbon.2014.09.008
    [18] Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS nano,2010,4:380-386. doi: 10.1021/nn901221k
    [19] Islam M. T, Dominguez A, Turley R S, et al. Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water[J]. Science of the Total Environment,2020,704:135406. doi: 10.1016/j.scitotenv.2019.135406
    [20] Zhou Z, Gao J, Zhang G, et al. Optimizing graphene-TiO2 interface properties via Fermi level modulation for photocatalytic degradation of volatile organic compounds[J]. Ceramics International,2020,46:5887-5893. doi: 10.1016/j.ceramint.2019.11.040
    [21] Lv Y, Xing B, Yi G, et al. Synthesis of oxygen-rich TiO2/coal-based graphene aerogel for enhanced photocatalytic activities[J]. Materials Science in Semiconductor Processing,2020,117:105169. doi: 10.1016/j.mssp.2020.105169
    [22] Yang J, Jia K, Wang M, et al. Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal–organic frameworks for lithium-ion batteries[J]. Nanotechnology,2020,31:145402. doi: 10.1088/1361-6528/ab6475
    [23] Huang H, Song Y, Li N, et al. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation[J]. Applied Catalysis B: Environmental,2019,251:154-161. doi: 10.1016/j.apcatb.2019.03.066
    [24] Hu J, Li H, Wu Q, et al. Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. Chemical Engineering Journal,2015,263:144-150. doi: 10.1016/j.cej.2014.11.007
    [25] Ong W J, Tan L L, Chai S P, et al. Self-assembly of nitrogen-doped TiO2 with exposed {001 facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane[J]. Nano Research,2014,7(10):1528-1547. doi: 10.1007/s12274-014-0514-z
    [26] Lu T, Zhang R, Hu C, et al. TiO2-graphene composites with exposed {001} facets produced by a one-pot solvothermal approach for high performance photocatalyst[J]. Physical Chemistry Chemical Physics,2013,15:12963. doi: 10.1039/c3cp50942g
    [27] Rambabu Y, Kumar U, Singhal N, et al. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes[J]. Applied Surface Science,2019,485:48-55. doi: 10.1016/j.apsusc.2019.04.041
    [28] Wang P, Wang J, Wang X, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental,2013,132- 133:452-459. doi: 10.1016/j.apcatb.2012.12.009
    [29] Shen J, Yan B, Shi M, et al. One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J]. Journal of Materials Chemistry,2011,21:3415. doi: 10.1039/c0jm03542d
    [30] Hu J, Li H, Muhammad S, et al. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances[J]. Journal of Solid State chemistry,2017,253:113-120. doi: 10.1016/j.jssc.2017.05.034
    [31] Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light[J]. Journal of Materials Science,2011,46:2622-2626. doi: 10.1007/s10853-010-5116-x
    [32] Dong H, Zeng G, Tang L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Research,2015,79:128-146. doi: 10.1016/j.watres.2015.04.038
    [33] Zangeneh H, Zinatizadeh A A L, Habibi M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review[J]. J Journal of industrial and engineering chemistry,2015,26:1-36. doi: 10.1016/j.jiec.2014.10.043
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  74
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-02-05

目录

    /

    返回文章
    返回