留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers

SU Ya-nan JING De-qi ZHANG Xing-hua ZHANG Shou-chun

苏亚男, 经德齐, 张兴华, 张寿春. 表面官能化对热塑性涂层改性炭纤维表界面性质的影响[J]. 新型炭材料, 2021, 36(6): 1169-1178. doi: 10.1016/S1872-5805(21)60049-5
引用本文: 苏亚男, 经德齐, 张兴华, 张寿春. 表面官能化对热塑性涂层改性炭纤维表界面性质的影响[J]. 新型炭材料, 2021, 36(6): 1169-1178. doi: 10.1016/S1872-5805(21)60049-5
SU Ya-nan, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers[J]. NEW CARBON MATERIALS, 2021, 36(6): 1169-1178. doi: 10.1016/S1872-5805(21)60049-5
Citation: SU Ya-nan, JING De-qi, ZHANG Xing-hua, ZHANG Shou-chun. Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers[J]. NEW CARBON MATERIALS, 2021, 36(6): 1169-1178. doi: 10.1016/S1872-5805(21)60049-5

表面官能化对热塑性涂层改性炭纤维表界面性质的影响

doi: 10.1016/S1872-5805(21)60049-5
基金项目: 中科院青年创新促进会(Y201646),中国科学院战略性先导科技专项(A类)子课题(XDA17040519),山西省重点研发计划项目(202003D111002, 201803D121042)
详细信息
    通讯作者:

    张寿春,研究员. E-mail:zschun@sxicc.ac.cn

  • 中图分类号: TQ342+.7

Effect of surface functionalization on the surface and interfacial properties of thermoplastic-coated carbon fibers

Funds: The Youth Innovation Promotion Association of the Chinese Academy of Science (CN) (Y201646); the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (A) Sub Topic (XDA17040519); Key R&D Projects of Shanxi Province (202003D111002, 201803D121042)
More Information
  • 摘要: 本文利用混酸氧化以及乙二胺接枝的方法得到羟基和氨基官能化炭纤维(CF―OH和CF―NH2),之后进行磺化聚醚醚酮上浆处理,制备了热塑性上浆剂涂层改性的功能化炭纤维(CF―OH―SPEEK以及CF―NH2―SPEEK),并研究表面官能团对热塑性涂层改性炭纤维表面以及复合材料界面性质的影响。结果表明,经表面功能化处理后,炭纤维的表面官能团含量以及表面润湿能力得到了明显的提高。核磁氢谱分析显示,引入的—OH、—NH2等基团与磺化聚醚醚酮发生化学反应,提高炭纤维和上浆涂层之间的结合能力。因此,与磺化聚醚醚酮直接涂层改性的退浆炭纤维(Desized-SPEEK)相比,CF―OH―SPEEK以及CF―NH2―SPEEK与聚醚醚酮复合时界面剪切强度分别提高了6.2%和14.0%,证明表面功能化处理有利于提高热塑性涂层改性的炭纤维复合材料的界面结合能力。
  • FIG. 1084.  FIG. 1084.

    FIG. 1084.. 

    Figure  1.  The process of surface functionalization and sizing treatment.

    Figure  2.  The schematic diagram of measuring dynamic contact angle.

    Figure  3.  The schematic diagram of monofilament tensile testing specimen.

    Figure  4.  The schematic diagram of micro-droplet debonding testing specimen.

    Figure  5.  Scanning electron microscope images of CFs: (a) desized CF, (b) desized−SPEEK, (c) CF−OH, (d) CF−OH−SPEEK, (e) CF−NH2 and (f) CF−NH2−SPEEK.

    Figure  6.  AFM images of CFs: (a) desized CF, (b) desized−SPEEK, (c) CF−OH, (d) CF−OH-SPEEK, (e) CF−NH2 and (f) CF−NH2−SPEEK.

    Figure  7.  XPS wide-scan spectra of CF surface: (a) desized CF, (b) desized−SPEEK, (c) CF−OH, (d) CF−OH−SPEEK, (e) CF−NH2 and (f) CF−NH2−SPEEK.

    Figure  8.  XPS wide-scan spectra of CFs surface: (a) desized CF, (b) desized −SPEEK, (c) CF−OH, (d) CF−OH−SPEEK, (e) CF−NH2 and (f) CF−NH2−SPEEK.

    Figure  9.  The structure of SPEEK.

    Figure  10.  1H NMR spectra of CFs: (a) desized −SPEEK, (b) CF−OH−SPEEK and (c) CF−NH2−SPEEK.

    Figure  11.  Weibull distribution curves of CFs: (a) desized CF, (b) desized −SPEEK, (c) CF−OH, (d) CF−OH−SPEEK, (e) CF−NH2 and (f) CF−NH2−SPEEK.

    Figure  12.  The IFSS of CF/PEEK composites: (a) CFs without sizing and (b) CFs after SPEEK sizing.

    Table  1.   The surface energy and its components of test liquids.

    Test
    Liquids
    Polar
    component
    γp (mN/m)
    Dispersion
    component
    γd (mN/m)
    Surface
    free energy
    γ (mN/m)
    DI5121.872.8
    CH2I2050.850.8
    下载: 导出CSV

    Table  2.   Surface roughness of CFs.

    CFs TypesSa (nm)
    Desized CF5.6±1.1
    Desized−SPEEK12.7±2.3
    CF−OH23.4±3.2
    CF−OH−SPEEK18.3±2.9
    CF−NH227.2±4.8
    CF−NH2−SPEEK21.7±3.6
    下载: 导出CSV

    Table  3.   Surface elemental compositions of CFs.

    CFs TypesElemental compositions (%)O/C (%)
    CNOSSi
    Desized83.700.8512.702.7515.17
    Desized−SPEEK82.4615.730.531.2819.08
    CF−OH73.9523.982.0732.43
    CF−OH−SPEEK75.2922.970.641.1030.51
    CF−NH273.694.0820.731.5028.13
    CF−NH2−SPEEK75.073.2119.670.691.3626.20
    下载: 导出CSV

    Table  4.   The fitting results of C1s curves.

    CFs TypesPeak assignment (%)Polar
    functional
    group (%)
    C—CC—NC—OC—SC=OO—C=O
    Desized77.902.5616.363.1822.10
    Desized−SPEEK72.9017.702.433.383.5927.10
    CF−OH67.0620.894.897.1632.94
    CF−OH−SPEEK68.1221.122.504.254.0131.88
    CF−NH266.789.0016.544.093.5933.22
    CF−NH2−SPEEK67.207.1816.942.464.152.0732.80
    下载: 导出CSV

    Table  5.   The dynamic contact angles and surface free energy results of CFs.

    CFs Types Contact angle (°)γp(mN/m)γd(mN/m)γ(mN/m)
    DICH2I2
    Desized72.9952.818.1232.6940.81
    Desized-SPEEK59.2836.6612.2641.2553.51
    CF-OH48.8224.3116.0046.3962.39
    CF-OH-SPEEK52.7429.2214.5944.5459.13
    CF-NH248.1123.6216.2946.6362.92
    CF-NH2-SPEEK51.1527.1515.1445.3660.50
    下载: 导出CSV

    Table  6.   The results of tensile strength and Weibull modulus.

    CFs TypesTensile strength(GPa)Weibull modulus(m)
    Desized CF4.689.97
    Desized−SPEEK4.7910.02
    CF−OH4.367.64
    CF−OH−SPEEK4.527.94
    CF−NH24.376.79
    CF−NH2−SPEEK4.467.46
    下载: 导出CSV
  • [1] Lei P, Yapici U. A comparative study on mechanical properties of carbon fiber/PEEK composites[J]. Advanced Composite Materials,2015,25(4):359-374.
    [2] Gao S L, Kim J K. Cooling rate influences in carbon fibre PEEK composites. Part 1. Crystallinity and interface adhesion[J]. Composites: Part A,2000,31(6):517-530. doi: 10.1016/S1359-835X(00)00009-9
    [3] Sharma M, Bijwe J, Mitschang P. Wear performance of PEEK–carbon fabric composites with strengthened fiber–matrix interface[J]. Wear,2011,271(9-10):2261-2268. doi: 10.1016/j.wear.2010.11.055
    [4] Wu G P, Li D H, Yang Y, et al. Carbon layer structures and thermal conductivity of graphitized carbon fibers[J]. Journal of Materials Science,2011,47(6):2882-2890.
    [5] Ishifune M, Suzuki R, Mima Y, et al. Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode[J]. Electrochimica Acta,2005,51(1):14-22. doi: 10.1016/j.electacta.2005.04.002
    [6] Zielke U, Hüttinger K J, Hoffman W P. Surface oxidized carbon fibers Ⅱ. chemical modification[J]. Carbon,1996,34(8):999-1005. doi: 10.1016/0008-6223(96)00033-4
    [7] Zhou J Y, Wang Z W, Zuo R, et al. The surface structure and chemical characters of activated carbon fibers modified by plasma[J]. Asia-Pacific Journal of Chemical Engineering,2012,7:S245-S252. doi: 10.1002/apj.570
    [8] Tang S, Lu N, Wang J K, et al. Novel effects of surface modification on activated carbon fibers using a low pressure plasma treatment[J]. Journal of Physical Chemistry C,2007,111:1820-1829. doi: 10.1021/jp065907j
    [9] Norazian I S, Suraya A R, Norhafizah A. The effects of catalyst introduction in carbon fiber coating process via CVD on tensile properties of carbon fiber reinforced Polypropylene composite[J]. IEEE Business Engineering and Industrial Applications Colloquium,2013,6:538-543.
    [10] Aziz S, Rashid S A, Rahmanian S, et al. Experimental evaluation of the interfacial properties of carbon nanotube coated carbon fiber reinforced hybrid composites[J]. Polymer Composites,2015,36(10):1941-1950. doi: 10.1002/pc.23103
    [11] CAO Xia, WEN Yue-fang, ZHANG Shou-chun, et al. A heat-resistant emulsifying sizing agent for carbon fibers[J]. New Carbon Materials,2006,21(4):337-342. doi: 10.3969/j.issn.1007-8827.2006.04.009
    [12] Zhang W S, Yang C L, Yao L L, et al. Effect of polyurethane sizing agent on interface properties of carbon fiber reinforced polycarbonate composites[J]. Journal of Applied Polymer Science,2019,136(38):47982-47991. doi: 10.1002/app.47982
    [13] Yao T T, Liu Y T, Zhu H, et al. Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers[J]. Composites Science and Technology,2019,182:107763-107771. doi: 10.1016/j.compscitech.2019.107763
    [14] Meng L H, Fan D P, Zhang C H, et al. The effect of oxidation treatment by KClO3/H2SO4 system on intersurface performance of carbon fibers[J]. Applied Surface Science,2013,268:225-230. doi: 10.1016/j.apsusc.2012.12.066
    [15] Wang X K, Huang Z G, Lai M L, et al. Highly enhancing the interfacial strength of CF/PEEK composites by introducing PAIK onto diazonium functionalized carbon fibers[J]. Applied Surface Science,2020,510:145400-145408. doi: 10.1016/j.apsusc.2020.145400
    [16] Sharma M, Bijwe J, Mäder E, et al. Strengthening of CF/PEEK interface to improve the tribological performance in low amplitude oscillating wear mode[J]. Wear,2013,301(1-2):735-739. doi: 10.1016/j.wear.2012.12.006
    [17] HUANG Yu-dong, GUO Hui, et al. A method for measuring the surface energy of carbon fiber[P]. China, invention patent. 2009-8-19
    [18] Zinck P, Pays M F, Rezakhanlou R, et al. Extrapolation techniques at short gauge lengths based on the weakest link concept for fibres exhibiting multiple failure modes[J]. Philosophical Magazine A,1999,79(9):2103-2122. doi: 10.1080/01418619908210411
    [19] Dong Y, Yu T, Wang X J, et al. Improved interfacial shear strength in polyphenylene sulfide/carbon fiber composites via the carboxylic polyphenylene sulfide sizing agent[J]. Composites Science and Technology,2020,190:108056-108064. doi: 10.1016/j.compscitech.2020.108056
    [20] Huang S Y, Wu G P, Chen C M, et al. Electrophoretic deposition and thermal annealing of a graphene oxide thin film on carbon fiber surfaces[J]. Carbon,2013,52:613-616. doi: 10.1016/j.carbon.2012.09.062
    [21] Deng S Q, Ye L, Mai Y W, et al. Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests[J]. Composires Part A,1998,29(29A):423-434.
    [22] Wang Cun-tao, XIE Jian-fei, QIU Yi-ping. Evaluating the effect of surface treatment on the tensile strength of carbon fiber with weibull theory[J]. Technical Textiles,2011(2):19-22. doi: 10.3969/j.issn.1004-7093.2011.02.006
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  109
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-09-23
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回