A wet granulation method to prepare graphite particles with a high tap density for high volumetric energy density lithium-ion storage
-
摘要: 石墨是锂离子电池使用最广泛的负极材料,提高石墨的球形度和密度是提高其能量密度的重要方法。本文报道了通过高剪切湿法制粒技术制备具有高振实密度石墨颗粒的一种简单方法,将两种石墨材料致密化为两种石墨颗粒,即湿法制粒的洋葱状碳(WG-GOC)和湿法制粒的人造石墨(WG-AG)。结果发现,与制粒前的原始石墨相比,WG-GOC的振实密度提高了约34%,WG-AG的振实密度提高了约44%。当作为锂离子电池负极时,在电流密度为50 mA g−1时,WG-GOC和WG-AG的体积容量分别增加了约35%和55%。此外,WG-GOC的倍率性能也得到了明显改善。在电流密度为2000 mA g−1时,WG-GOC的体积比容量增加了169.1%。电化学性能的显著提升得益于所制石墨颗粒具有更高的振实密度。因此,利用湿法制粒法开发了一种制备高振实密度石墨负极的简易方法,这有利于高容量电极的发展。Abstract: Graphite is the most widely used anode material for lithium ion batteries (LIBs). Increasing the sphericity and tap density of the graphite particles is important for improving their volumetric energy density. We report a simple approach to prepare high tap-density graphite granules by high-shear wet granulation. Graphitic onion-like carbon (GOC) and artificial graphite (AG) were densified into granules by wet-granulation to obtain WG-GOC and WG-AG, respectively. Results indicate that, compared with the original graphite before granulation, the tap densities of WG-GOC and WG-AG increased by 34% and 44%, respectively. The respective volumetric energy densities of WG-GOC and WG-AG increased by 35% and 55% at a current density of 50 mA g−1. The rate performance of WG-GOC was also significantly improved. The volumetric capacity of WG-GOC at a current density of 2 000 mA g−1 was 169.1% of the original GOC. The significant improvement of electrochemical performance is ascribed to the increased tap density of the graphite granules.
-
Key words:
- Graphite /
- High tap density /
- Wet-granulation /
- High volumetric capacity
-
Table 1. BET, XRD and Raman parameters, and tap density for the samples.
SBET
(m2 g−1)2θ(002)
(°)d(002)(nm) Lc(nm) ID/IG Tap density
(g cm−3)GOC 4.6 26.42 0.3371 30.4 0.14 0.53 WG-GOC 4.5 26.24 0.3393 27.3 0.17 0.70 AG 2.8 26.42 0.3371 39.1 0.20 0.53 WG-AG 6.3 26.40 0.3373 26.9 0.24 0.77 Table 2. A performance comparison of various graphite anodes.
Activematerials Specific capacity
(mA h g−1)Initial CE(%) Electrode composition[a]
(AM:BM:CM)Natural graphite SG[40] 357.9 90.9 97:1.5:1.5 NFG[41] 359.9 99.7 96:3:1 SG-18[10] 342.7 85.2 94:3:3 Modified graphite G/C-A400[40] 351.0 77.0 97:1.5:1.5 FG-1[41] 361.1 94.4 96:3:1 G@K850[42] Ca.437 Ca.78 80:10:10 C37.5[43] 329 G-SI[44] 292.4 86.1 94:6:0 Artificial material TXG/La[45] 337.2 85.88 92:5:3 CG-2500[46] 347 70.1 90:5:5 CX-1500[37] Ca.200 92:8:0 BCNF[47] 290 54 80:20:0 BCG-2800[48] 324.6 87.5 80:10:10 This work GOC 370.4 86.8 80:10:10 WG-GOC 372.3 88.0 80:10:10 AG 374.2 88.9 80:10:10 WG-AG 364.3 71.8 80:10:10 Note: [a]: AM: Active material, BM: binder, CM: conductive material. -
[1] Yoshino A. The birth of the lithium-ion battery[J]. Angewandte Chemie-international Edition,2012,51(24):5798-5800. doi: 10.1002/anie.201105006 [2] JIN Cheng-bin, SHI Peng, ZHANG Xue-qiang, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials,2022,37(1):1-24. [3] Buqa H, Würsig A, Goers D, et al. Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes[J]. Journal of Power Sources,2005,146(1-2):134-141. doi: 10.1016/j.jpowsour.2005.03.106 [4] Park Y S, Bang H J, Oh S M, et al. Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries[J]. Journal of Power Sources,2009,190(2):553-557. doi: 10.1016/j.jpowsour.2009.01.067 [5] Zubizarreta L, Gil-Agustí M, Khomenko V, et al. C/C composite anodes for long-life lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2017,21(12):3557-3566. doi: 10.1007/s10008-017-3702-4 [6] Chen Y, Wang G X, Tian J P, et al. Preparation and properties of spherical LiNi0.75Co0.25O2 as a cathode for lithium-ion batteries[J]. Electrochimica Acta,2004,50(2-3):435-441. doi: 10.1016/j.electacta.2004.03.053 [7] Ying J, Jiang C, Wan C. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries[J]. Journal of Power Sources,2004,129(2):264-269. doi: 10.1016/j.jpowsour.2003.10.007 [8] Yang S, Song H, Chen X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries[J]. Electrochemistry Communications,2006,8(1):137-142. doi: 10.1016/j.elecom.2005.10.035 [9] Yuan M, Cao B, Meng C, et al. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chemical Engineering Journal,2020,400:125948. doi: 10.1016/j.cej.2020.125948 [10] Zhang W H, Fang L, Yue M, et al. Improved electrochemical performance of modified natural graphite anode for lithium secondary batteries[J]. Journal of Power Sources,2007,174(2):766-769. doi: 10.1016/j.jpowsour.2007.06.252 [11] Zhang L, Zhang M, Wang Y, et al. Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries[J]. Journal of Materials Chemistry A,2014,2(26):10161-10168. doi: 10.1039/c4ta00356j [12] Chen Z, Zhu D, Li J, et al. Porous functionalized carbon as anode for a long cycling of sodium-ion batteries[J]. Ionics,2019,25(9):4517-4522. doi: 10.1007/s11581-019-03157-4 [13] Bie Y, Yu J, Yang J, et al. Porous microspherical silicon composite anode material for lithium ion battery[J]. Electrochimica Acta,2015,178:65-73. doi: 10.1016/j.electacta.2015.07.173 [14] Guan P, Li J, Lu T, et al. Facile and scalable approach to fabricate granadilla-like porous-structured silicon-based anode for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(40):34283-34290. doi: 10.1021/acsami.8b12071 [15] Xu Q, Li J Y, Sun J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials,2017,7(3):1601481. doi: 10.1002/aenm.201601481 [16] Jian W, Cong-min Q, Huan S, et al. A review of silicon /carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries[J]. New Carbon Materials,2020,35(2):97-111. [17] Mondal A, Maiti S, Singha K, et al. TiO2-rGO nanocomposite hollow spheres: Large scale synthesis and application as an efficient anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(45):23853-23862. doi: 10.1039/C7TA08164B [18] Choi J H, Park G D, Jung D S, et al. Pitch-derived carbon coated SnO2-CoO yolk-shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal,2019,369:726-735. doi: 10.1016/j.cej.2019.03.123 [19] Lu Z, Kong Z, Jing L, et al. Porous SnO2/graphene composites as anode materials for lithium-ion batteries: Morphology control and performance improvement[J]. Energy & Fuels,2020,34(10):13126-13136. [20] Jia X, Cheng Y, Lu Y, et al. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials[J]. ACS Nano,2014,8:9265-9273. doi: 10.1021/nn5031302 [21] Hu X, Sun X, Yoo S J, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-839. doi: 10.1016/j.nanoen.2018.11.081 [22] Wang J, Yan X, Zhang Z, et al. Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage[J]. Advanced Functional Materials,2019,29(39):1904819. doi: 10.1002/adfm.201904819 [23] Ying H, Zhang S, Meng Z, et al. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes[J]. Journal of Materials Chemistry A,2017,5(18):8334-8342. doi: 10.1039/C7TA01480E [24] Ma Z, Cui Y, Xiao X, et al. A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite[J]. Journal of Materials Chemistry A,2016,4(29):11462-11471. doi: 10.1039/C6TA02195F [25] Nomura K, Titapiwatanakun V, Hisada H, et al. In situ monitoring of the crystalline state of active pharmaceutical ingredients during high-shear wet granulation using a low-frequency Raman probe[J]. European Journal of Pharmaceutics and Biopharmaceutics,2020,147:1-9. doi: 10.1016/j.ejpb.2019.12.004 [26] Narang A S, Sheverev V A, Stepaniuk V, et al. Real-time assessment of granule densification in high shear wet granulation and application to scale-up of a placebo and a brivanib alaninate formulation[J]. Journal of Pharmaceutical Sciences,2015,104(3):1019-1034. doi: 10.1002/jps.24233 [27] Cao B, Liu H, Xing Z, et al. Preparation of nitrogen-doped carbon spheres by injecting pyrolysis of pyridine[J]. ACS Sustainable Chemistry & Engineering,2015,3(8):1786-1793. [28] Wang D, Zhou C, Cao B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials,2020,24:312-318. doi: 10.1016/j.ensm.2019.07.045 [29] Akiti N, Cheong Y S, Hapgood K P, et al. A study of wet granule breakage in a breakage-only high-shear mixer[J]. Advanced Powder Technology,2020,31(6):2438-2446. doi: 10.1016/j.apt.2020.04.010 [30] Probst K V, Ileleji K E. The effect of process variables on drum granulation behavior and granules of wet distillers grains with solubles[J]. Advanced Powder Technology,2016,27(4):1347-1359. doi: 10.1016/j.apt.2016.04.029 [31] Wade J B, Miesle J E, Avilés S L, et al. Exploring the wet granulation growth regime map-validating the boundary between nucleation and induction[J]. Chemical Engineering Research and Design,2020,156:469-477. doi: 10.1016/j.cherd.2020.02.024 [32] Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801149. doi: 10.1002/aenm.201801149 [33] Takagi H, Maruyama K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel,2004,83(17-18):2427-2433. doi: 10.1016/j.fuel.2004.06.019 [34] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon,2009,47(8):2049-2053. doi: 10.1016/j.carbon.2009.03.053 [35] Li J, Yang S, Wang G, et al. Seed-initiated synthesis and tunable doping graphene for high-performance photodetectors[J]. Advanced Optical Materials,2019,7(24):1901388. doi: 10.1002/adom.201901388 [36] Bannov A G, Manakhov A, Shibaev A A, et al. Synthesis dynamics of graphite oxide[J]. Thermochimica Acta,2018,663:165-175. doi: 10.1016/j.tca.2018.03.017 [37] Canal-Rodríguez M, Arenillas A, Menéndez J A, et al. Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries[J]. Carbon,2018,137:384-394. doi: 10.1016/j.carbon.2018.05.045 [38] Shi L, Chen Y, Chen G, et al. Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries[J]. Carbon,2017,123:186-192. doi: 10.1016/j.carbon.2017.07.062 [39] Kim J, Nithya Jeghan S M, Lee G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials,2020,305:110325. doi: 10.1016/j.micromeso.2020.110325 [40] Im U S, Hwang J U, Yun J H, et al. The effect of mild activation on the electrochemical performance of pitch-coated graphite for the lithium-ion battery anode material[J]. Materials Letters,2020,278:128421. doi: 10.1016/j.matlet.2020.128421 [41] Liao X, Ding Z, Yin Z. Excellent performance of a modified graphite anode for lithium-ion battery application[J]. Ionics,2020,26(11):5367-5373. doi: 10.1007/s11581-020-03577-7 [42] Zhang L, Zeng M, Wu D, et al. Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance[J]. ACS Sustainable Chemistry & Engineering,2019,7(6):6152-6160. [43] Wu Y, Wang L Y, Li Y F, et al. KCl-modified graphite as high performance anode material for lithium-ion batteries with excellent rate performance[J]. The Journal of Physical Chemistry C,2017,121(24):13052-13058. doi: 10.1021/acs.jpcc.7b03410 [44] Gong X, Zheng J, Zheng Y, et al. Succinimide-modified graphite as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2020,356:136858. doi: 10.1016/j.electacta.2020.136858 [45] Wang T, Wang Y, Cheng G, et al. Catalytic graphitization of anthracite as an anode for lithium-ion batteries[J]. Energy & Fuels,2020,34(7):8911-8918. [46] Han L, Zhu X, Yang F, et al. Eco-conversion of coal into a nonporous graphite for high-performance anodes of lithium-ion batteries[J]. Powder Technology,2021,32:40-47. [47] Cuesta N, Cameán I, Ramos A, et al. Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries[J]. Electrochimica Acta,2016,222:264-270. doi: 10.1016/j.electacta.2016.10.170 [48] Xing B, Zhang C, Cao Y, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology,2018,172:162-171. doi: 10.1016/j.fuproc.2017.12.018 -