留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A wet granulation to dense graphite particles for high volumetric lithium-ion storage

ZHANG Jia-peng WANG Deng-ke ZHANG Li-hui LIU Hai-yan LIU Zhao-bin XING Tao MA Zhao-kun CHEN Xiao-hong SONG Huai-he

张家鹏, 王登科, 张利慧, 刘海燕, 刘昭斌, 邢涛, 马兆昆, 陈晓红, 宋怀河. 用于锂离子高体积储存的致密石墨颗粒的湿法制备[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60051-3
引用本文: 张家鹏, 王登科, 张利慧, 刘海燕, 刘昭斌, 邢涛, 马兆昆, 陈晓红, 宋怀河. 用于锂离子高体积储存的致密石墨颗粒的湿法制备[J]. 新型炭材料. doi: 10.1016/S1872-5805(21)60051-3
ZHANG Jia-peng, WANG Deng-ke, ZHANG Li-hui, LIU Hai-yan, LIU Zhao-bin, XING Tao, MA Zhao-kun, CHEN Xiao-hong, SONG Huai-he. A wet granulation to dense graphite particles for high volumetric lithium-ion storage[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60051-3
Citation: ZHANG Jia-peng, WANG Deng-ke, ZHANG Li-hui, LIU Hai-yan, LIU Zhao-bin, XING Tao, MA Zhao-kun, CHEN Xiao-hong, SONG Huai-he. A wet granulation to dense graphite particles for high volumetric lithium-ion storage[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60051-3

用于锂离子高体积储存的致密石墨颗粒的湿法制备

doi: 10.1016/S1872-5805(21)60051-3

A wet granulation to dense graphite particles for high volumetric lithium-ion storage

Funds: This work was supported by the National Natural Science Foundation of China (U1610252)
More Information
  • 摘要: 石墨是锂离子电池使用最广泛的负极材料,提高石墨的球形度和密度是提高其能量密度的重要方法。在本文中,我们报道了通过高剪切湿法制粒技术制备了具有高振实密度石墨颗粒的一种简单方法,将两种石墨材料致密化为两种石墨颗粒,即湿法制粒的洋葱状碳(WG-GOC)和湿法制粒的人造石墨(WG-AG)。结果发现,与制粒前的原始石墨相比,WG-GOC的振实密度提高了约34%,WG-AG的振实密度提高了约44%。当作为锂离子电池负极时,在电流密度为50 mA g−1时,WG-GOC和WG-AG的体积容量分别增加了约35%和约55%。此外,WG-GOC的倍率性能也得到了显着改善。在电流密度为2000 mA g−1时,WG-GOC的体积比容量增加了169.1%。电化学性能的显著提升得益于所制备的石墨颗粒具有更高的振实密度。因此,我们利用湿法制粒法开发了一种制备高振实密度石墨负极的简易方法,这有利于高容量电极的发展。
  • Figure  1.  Schematic illustration of the preparation of WG-GOC and WG-AG.

    Figure  2.  SEM images of (a)GOC, (b, c)WG-GOC, (d)AG and (e, f)WG-AG, embedded images show their respective particle size distributions.

    Figure  3.  XRD patterns: (a) GOC and WG-GOC, (b) AG and WG-AG. Raman spectra: (c) GOC and WG-GOC, (d) AG and WG-AG.

    Figure  4.  CV curves and charge-discharge curves of four materials (a, e) GOC, (b, f) AG, (c, g) WG-GOC, and (d, h) WG-AG, respectively.

    Figure  5.  Comparison of cycle performance, (a)GOC and WG-GOC, (b) AG and WGAG. Comparison of rate performance (c)GOC and WG-GOC (d) AG and WG-AG.

    Table  1.   BET, XRD, Raman and tap density parameters for the samples

    SBET
    (m2 g−1)
    2θ(002)
    (degree)
    d(002)(nm)Lc(nm)ID/IGTap density
    (g cm−3)
    GOC4.626.420.337130.40.140.53
    WG-GOC4.526.240.339327.30.170.70
    AG2.826.420.337139.10.200.53
    WG-AG6.326.400.337326.90.240.77
    下载: 导出CSV

    Table  2.   Comparison of various graphite anodes

    ActivematerialsSpecific capacity
    (mA h g−1)
    Initial CE(%)Electrode composition[a]
    (AM:BM:CM)
    Natural graphiteSG[40]357.990.997:1.5:1.5
    NFG[41]359.999.796:3:1
    SG-18[10]342.785.294:3:3
    Modified graphiteG/C-A400[40]351.077.097:1.5:1.5
    FG-1[41]361.194.496:3:1
    G@K850[42]Ca.437Ca.7880:10:10
    C37.5[43]329
    G-SI[44]292.486.194:6:0
    Artificial materialTXG/La[45]337.285.8892:5:3
    CG-2500[46]34770.190:5:5
    CX-1500[37]Ca.20092:8:0
    BCNF[47]2905480:20:0
    BCG-2800[48]324.687.580:10:10
    Our workGOC370.486.880:10:10
    WG-GOC372.388.080:10:10
    AG374.288.980:10:10
    WG-AG364.371.880:10:10
    [a]: AM: Active material; BM: binder; CM: conductive material.
    下载: 导出CSV
  • [1] Yoshino A. The birth of the lithium-ion battery[J]. Angew Chem Int Ed Engl,2012,51(24):5798-800. doi: 10.1002/anie.201105006
    [2] Jung DS, Hwang TH, Park SB, et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries[J]. Nano Lett,2013,13(5):2092-7. doi: 10.1021/nl400437f
    [3] Buqa H, Würsig A, Goers D, et al. Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes[J]. Journal of Power Sources,2005,146(1-2):134-41. doi: 10.1016/j.jpowsour.2005.03.106
    [4] Park Y-S, Bang HJ, Oh S-M, et al. Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries[J]. Journal of Power Sources,2009,190(2):553-7. doi: 10.1016/j.jpowsour.2009.01.067
    [5] Zubizarreta L, Gil-Agustí M, Khomenko V, et al. C/C composite anodes for long-life lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2017,21(12):3557-66. doi: 10.1007/s10008-017-3702-4
    [6] Chen Y, Wang GX, Tian JP, et al. Preparation and properties of spherical LiNi0.75Co0.25O2 as a cathode for lithium-ion batteries[J]. Electrochimica Acta,2004,50(2-3):435-41. doi: 10.1016/j.electacta.2004.03.053
    [7] Ying J, Jiang C, Wan C. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries[J]. Journal of Power Sources,2004,129(2):264-9. doi: 10.1016/j.jpowsour.2003.10.007
    [8] Yang S, Song H, Chen X. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries[J]. Electrochemistry Communications,2006,8(1):137-42. doi: 10.1016/j.elecom.2005.10.035
    [9] Yuan M, Cao B, Meng C, et al. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chemical Engineering Journal,2020,400:125948. doi: 10.1016/j.cej.2020.125948
    [10] Zhang W-H, Fang L, Yue M, et al. Improved electrochemical performance of modified natural graphite anode for lithium secondary batteries[J]. Journal of Power Sources,2007,174(2):766-9. doi: 10.1016/j.jpowsour.2007.06.252
    [11] Zhang L, Zhang M, Wang Y, et al. Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries[J]. Journal of Materials Chemistry A,2014,2(26):10161-8. doi: 10.1039/c4ta00356j
    [12] Chen Z, Zhu D, Li J, et al. Porous functionalized carbon as anode for a long cycling of sodium-ion batteries[J]. Ionics,2019,25(9):4517-22. doi: 10.1007/s11581-019-03157-4
    [13] Bie Y, Yu J, Yang J, et al. Porous microspherical silicon composite anode material for lithium ion battery[J]. Electrochimica Acta,2015,178:65-73. doi: 10.1016/j.electacta.2015.07.173
    [14] Guan P, Li J, Lu T, et al. Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries[J]. ACS Appl Mater Interfaces,2018,10(40):34283-90. doi: 10.1021/acsami.8b12071
    [15] Xu Q, Li J-Y, Sun J-K, et al. Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes[J]. Advanced Energy Materials,2017,7(3):1601481. doi: 10.1002/aenm.201601481
    [16] Jian W, Cong-min Q, Huan S, et al. A review of silicon /carbon composite anode materials with an encapsulated structure for lithium-ion rechargeable batteries[J]. New Carbon Materials,2020,35(2):97-111.
    [17] Mondal A, Maiti S, Singha K, et al. TiO2-rGO nanocomposite hollow spheres: large scale synthesis and application as an efficient anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(45):23853-62. doi: 10.1039/C7TA08164B
    [18] Choi JH, Park GD, Jung DS, et al. Pitch-derived carbon coated SnO2–CoO yolk–shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal,2019,369:726-35. doi: 10.1016/j.cej.2019.03.123
    [19] Lu Z, Kong Z, Jing L, et al. Porous SnO2/Graphene Composites as Anode Materials for Lithium-Ion Batteries: Morphology Control and Performance Improvement[J]. Energy & Fuels,2020,34(10):13126-36.
    [20] Jia X, Cheng Y, Lu Y, et al. Building Robust Carbon Nanotube-Interweaved-Nanocrystal Architecture for High-Performance Anode Materials[J]. ACS NANO,2014,8:9265-73. doi: 10.1021/nn5031302
    [21] Hu X, Sun X, Yoo SJ, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-39. doi: 10.1016/j.nanoen.2018.11.081
    [22] Wang J, Yan X, Zhang Z, et al. Facile Preparation of High-Content N-Doped CNT Microspheres for High-Performance Lithium Storage[J]. Advanced Functional Materials,2019,29(39):1904819. doi: 10.1002/adfm.201904819
    [23] Ying H, Zhang S, Meng Z, et al. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes[J]. Journal of Materials Chemistry A,2017,5(18):8334-42. doi: 10.1039/C7TA01480E
    [24] Ma Z, Cui Y, Xiao X, et al. A reconstructed graphite-like carbon micro/nano-structure with higher capacity and comparative voltage plateau of graphite[J]. Journal of Materials Chemistry A,2016,4(29):11462-71. doi: 10.1039/C6TA02195F
    [25] Nomura K, Titapiwatanakun V, Hisada H, et al. In situ monitoring of the crystalline state of active pharmaceutical ingredients during high-shear wet granulation using a low-frequency Raman probe[J]. Eur J Pharm Biopharm,2020,147:1-9. doi: 10.1016/j.ejpb.2019.12.004
    [26] Narang AS, Sheverev VA, Stepaniuk V, et al. Real-time assessment of granule densification in high shear wet granulation and application to scale-up of a placebo and a brivanib alaninate formulation[J]. J Pharm Sci,2015,104(3):1019-34. doi: 10.1002/jps.24233
    [27] Cao B, Liu H, Xing Z, et al. Preparation of Nitrogen-Doped Carbon Spheres by Injecting Pyrolysis of Pyridine[J]. ACS Sustainable Chemistry & Engineering,2015,3(8):1786-93.
    [28] Wang D, Zhou C, Cao B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials,2020,24:312-8. doi: 10.1016/j.ensm.2019.07.045
    [29] Akiti N, Cheong YS, Hapgood KP, et al. A study of wet granule breakage in a breakage-only high-shear mixer[J]. Advanced Powder Technology,2020,31(6):2438-46. doi: 10.1016/j.apt.2020.04.010
    [30] Probst KV, Ileleji KE. The effect of process variables on drum granulation behavior and granules of wet distillers grains with solubles[J]. Advanced Powder Technology,2016,27(4):1347-59. doi: 10.1016/j.apt.2016.04.029
    [31] Wade JB, Miesle JE, Avilés SL, et al. Exploring the wet granulation growth regime map – validating the boundary between nucleation and induction[J]. Chemical Engineering Research and Design,2020,156:469-77. doi: 10.1016/j.cherd.2020.02.024
    [32] Cao B, Zhang Q, Liu H, et al. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries[J]. Advanced Energy Materials,2018,8(25):1801149. doi: 10.1002/aenm.201801149
    [33] Takagi H, Maruyama K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel,2004,83(17-18):2427-33. doi: 10.1016/j.fuel.2004.06.019
    [34] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon,2009,47(8):2049-53. doi: 10.1016/j.carbon.2009.03.053
    [35] Li J, Yang S, Wang G, et al. Seed-Initiated Synthesis and Tunable Doping Graphene for High-Performance Photodetectors[J]. Advanced Optical Materials,2019,7(24):1901388. doi: 10.1002/adom.201901388
    [36] Bannov AG, Manakhov A, Shibaev AA, et al. Synthesis dynamics of graphite oxide[J]. Thermochimica Acta,2018,663:165-75. doi: 10.1016/j.tca.2018.03.017
    [37] Canal-Rodríguez M, Arenillas A, Menéndez JA, et al. Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries[J]. Carbon,2018,137:384-94. doi: 10.1016/j.carbon.2018.05.045
    [38] Shi L, Chen Y, Chen G, et al. Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries[J]. Carbon,2017,123:186-92. doi: 10.1016/j.carbon.2017.07.062
    [39] Kim J, Nithya Jeghan SM, Lee G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials,2020,305:110325. doi: 10.1016/j.micromeso.2020.110325
    [40] Im U-S, Hwang JU, Yun JH, et al. The effect of mild activation on the electrochemical performance of pitch-coated graphite for the lithium-ion battery anode material[J]. Materials Letters,2020,278:128421. doi: 10.1016/j.matlet.2020.128421
    [41] Liao X, Ding Z, Yin Z. Excellent performance of a modified graphite anode for lithium-ion battery application[J]. Ionics,2020,26(11):5367-73. doi: 10.1007/s11581-020-03577-7
    [42] Zhang L, Zeng M, Wu D, et al. Magnetic Field Regulating the Graphite Electrode for Excellent Lithium-Ion Batteries Performance[J]. ACS Sustainable Chemistry & Engineering,2019,7(6):6152-60.
    [43] Wu Y, Wang L-Y, Li Y-F, et al. KCl-Modified Graphite as High Performance Anode Material for Lithium-Ion Batteries with Excellent Rate Performance[J]. The Journal of Physical Chemistry C,2017,121(24):13052-8. doi: 10.1021/acs.jpcc.7b03410
    [44] Gong X, Zheng J, Zheng Y, et al. Succinimide-modified graphite as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2020,356:136858. doi: 10.1016/j.electacta.2020.136858
    [45] Wang T, Wang Y, Cheng G, et al. Catalytic Graphitization of Anthracite as an Anode for Lithium-Ion Batteries[J]. Energy & Fuels,2020,34(7):8911-8.
    [46] Han L, Zhu X, Yang F, et al. Eco-conversion of coal into a nonporous graphite for high-performance anodes of lithium-ion batteries[J]. Powder Technology,2020
    [47] Cuesta N, Cameán I, Ramos A, et al. Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries[J]. Electrochimica Acta,2016,222:264-70. doi: 10.1016/j.electacta.2016.10.170
    [48] Xing B, Zhang C, Cao Y, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology,2018,172:162-71. doi: 10.1016/j.fuproc.2017.12.018
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  110
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 修回日期:  2021-01-01
  • 网络出版日期:  2021-03-16

目录

    /

    返回文章
    返回