无烟煤基石墨的制备及储锂性能

Preparation and lithium storage of anthracite-based graphite anode materials

  • 摘要: 以无烟煤为原料,以工业硅粉为催化剂进行催化石墨化,制备了具有不同微观结构的煤基石墨,分析了催化反应机制,并考察了所制备的煤基石墨作为锂离子电池负极的电化学性能,进行了结构与性能的相关性研究。结果表明:当催化剂质量分数为5%时,所得石墨(G-2800-5%)的微晶尺寸较大,有序度较高,石墨化度为91.5%。将其用作锂离子电池负极材料时,表现出较好的电化学特性,在0.1 A g−1电流密度下稳定可逆容量为369 mAh g−1,当电流密度增大至1 A g−1,依然保持了209 mAh g−1的容量,在0.2 A g−1电流密度下循环200次的容量保持率可达92.2%。G-2800-5%样品石墨结构有序度高,表面形成的SEI膜薄均匀且锂离子的不可逆损失少,因此,其综合电化学性能较好。

     

    Abstract: Several graphite samples with different microstructures were prepared from anthracite using industrial silicon powders as catalyst. The mechanism of the catalytic reaction and the electrochemical properties of the prepared coal-based graphite in lithium anodes were investigated. The correlation between the microstructure and the properties of the graphite is discussed. Results show that the sample with 5% silicon (G-2800-5%) has the best lithium storage. It has the well-developed graphitic structure with a degree of graphitization of 91.5% as determined from the interlayer spacing. When used as an anode material, a high reversible capacity of 369.0 mAh g−1 was achieved at 0.1 A g−1 and its reversible capacity was 209.0 mAh g−1 at a current density of 1 A g−1. It also exhibits good cycling stability with a capacity retention of 92.2% after 200 cycles at 0.2 A g−1. The highly developed graphite structure, which is favorable for the formation of a stable SEI and therefore reduces lithium ion loss, is responsible for the superior electrochemical performance.

     

/

返回文章
返回