留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering

REN Xuan-ru WANG Wei-guang SUN Ke HU Yu-wen XU Lei-hua FENG Pei-zhong

任宣儒, 王炜光, 孙科, 胡昱雯, 徐磊华, 冯培忠. 液相烧结法制备MoSi2改性HfB2-SiC超高温陶瓷抗氧化涂层. 新型炭材料(中英文), 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4
引用本文: 任宣儒, 王炜光, 孙科, 胡昱雯, 徐磊华, 冯培忠. 液相烧结法制备MoSi2改性HfB2-SiC超高温陶瓷抗氧化涂层. 新型炭材料(中英文), 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4
REN Xuan-ru, WANG Wei-guang, SUN Ke, HU Yu-wen, XU Lei-hua, FENG Pei-zhong. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater., 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4
Citation: REN Xuan-ru, WANG Wei-guang, SUN Ke, HU Yu-wen, XU Lei-hua, FENG Pei-zhong. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater., 2022, 37(3): 603-614. doi: 10.1016/S1872-5805(21)60060-4

液相烧结法制备MoSi2改性HfB2-SiC超高温陶瓷抗氧化涂层

doi: 10.1016/S1872-5805(21)60060-4
基金项目: 中央高校基本科研业务费专项资金资助(2018GF14)
详细信息
    通讯作者:

    徐磊华,副教授. E-mail:xuleihua@cumt.edu.cn

  • 中图分类号: TB321

Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering

Funds: The Fundamental Research Funds for the Central Universities (2018GF14)
More Information
  • 摘要: 将原位反应法和浆料法相结合,开发了一种液相烧结法,制备了涂层组分、含量和厚度可控的HfB2-MoSi2-SiC涂层,研究了MoSi2含量对HfB2-MoSi2-SiC复合涂层在室温~1500 ℃动态有氧环境以及1500 ℃静态恒温空气下的氧化防护行为的影响,提出了利用相对氧气渗透率表征涂层的抗氧化保护能力。室温~1500 ℃的动态氧化测试结果表明,随着MoSi2含量的增加,试样的起始氧化失重从775 ℃延迟到821 ℃,最大失重速率从0.9×10−3 mg·cm−2·s−1降低到0.2×10−3 mg·cm−2·s−1,最低相对氧气渗透率降低至12.2%,失重率从1.8%降为0.21%。揭示了MoSi2增强涂层抗氧化保护能力的机理,随着MoSi2含量的增加,涂层中SiO2玻璃相的生成量增加,促进了涂层表面Hf氧化物的弥散,从而形成具有更高稳定性的Hf-Si-O复相玻璃层,使得试样在1500 ℃静态恒温空气下氧化200 h的失重率从0.46%降低到0.08%,显著提升了涂层的抗氧化保护能力。
  • FIG. 1543.  FIG. 1543.

    FIG. 1543.. 

    Figure  1.  Synthesis diagram of the HfB2-SiC-MoSi2/SiC coating prepared by a liquid phase sintering method

    Figure  2.  TEM images of HfB2 powder

    Figure  3.  XRD pattern of the HfB2-MoSi2-SiC coating

    Figure  4.  SEM images and EDS of the HfB2-MoSi2-SiC composite coating

    Figure  5.  Section backscattering SEM images of (a) the SiC inner coating layer and (b) the HfB2-MoSi2-SiC/SiC composite coating

    Figure  6.  TG curves of the HfB2-MoSi2-SiC composite coatings from room temperature to 1500 ℃ in air

    Figure  7.  Weight loss rate curves of three HfB2-MoSi2-SiC composite coatings

    Figure  8.  Relative oxygen permeability curves of the HfB2-MoSi2-SiC composite coatings containing MoSi2

    Figure  9.  Isothermal oxidation curves of HfB2-MoSi2-SiC coatings at 1500 ℃

    Figure  10.  XRD patterns of HfB2-MoSi2-SiC composite coatings after static constant temperature oxidation at 1500 ℃ for 200 h

    Figure  11.  SEM morphology and EDS of the HfB2-MoSi2-SiC coatings after dynamic oxidation at room temperature to 1500 ℃: (a)HfB2-60SiC, (b)HfB2-20MoSi2-40SiC, (c)HfB2-40MoSi2-20SiC, (d) EDS of the region 1, (e) EDS of the region 2 and (f) EDS of the region 3

    Figure  12.  SEM images of surface backscatter of HfB2-MoSi2-SiC coatings after static constant temperature oxidation at 1500 ℃ for 200 h: (a)HfB2-60SiC, (b)HfB2-20MoSi2-40SiC and (c)HfB2-40MoSi2-20SiC

  • [1] Li H J, Chen M M, Yao X Y, et al. Status and prospect of self-healing for carbon/carbon composites research[J]. Journal of the Chinese Ceramic Society,2018,46(01):142-149.
    [2] Silvestroni L, Guicciardi S, Melandri C, et al. TaB2-based ceramics: Microstructure, mechanical properties and oxidation resistance[J]. Journal of the European Ceramic Society,2012,32:97-105. doi: 10.1016/j.jeurceramsoc.2011.07.032
    [3] Huang M, Li K Z, Li H J, et al. Yttrium silicate coatings for SiC coated C/C composites prepared by atmospheric plasma spraying[J]. New Carbon Materials,2010,25(3):187-191.
    [4] Silvestroni L, Bellosi A, Melandri C, et al. Microstructure and properties of HfC and TaC-based ceramics obtained by ultrafifine powder[J]. Journal of the European Ceramic Society,2011,31:619-27. doi: 10.1016/j.jeurceramsoc.2010.10.036
    [5] Liu Y, Fu Q G, Zhao F L, et al. Internal friction vs. thermal shock in C/C composites[J]. Part B-Engineering,2016,106:59-65. doi: 10.1016/j.compositesb.2016.06.078
    [6] Zhang Y L, Hu H, Zhang P F, et al. SiC/ZrB2-SiC-ZrC multilayer coating for carbon/carbon composites against ablation[J]. Surface & Coatings Technology,2016,300:1-9. doi: 10.1016/j.surfcoat.2016.05.028
    [7] Corral E, Walker L. Improved ablation resistance of C-C composites using zirconium diboride and boron carbide[J]. Journal of the European Ceramic Society,2010,30:2357-2364. doi: 10.1016/j.jeurceramsoc.2010.02.025
    [8] Liu T Y, Fu Q G, Cheng C Y. Effects of particle impacting on ablation property of C/C-ZrC-SiC composites via injection method[J]. Equipment Environmental Engineering,2019,16(10):8-15.
    [9] Zhou L, Huang J F, Cao L Y, et al. A novel design of oxidation protective β-Y2Si2O7 nanowire toughened Y2SiO5/Y2O3-Al2O3-SiO2 glass ceramic coating for SiC coated carbon/carbon composites[J]. Corrosion Science,2018(135):233-242.
    [10] Li H J, Shi X H, Shen Q Q, et al. Research and development of C/C composites in China[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2142-2154.
    [11] Jortenr J, Priya N S. Applications of carbon/carbon composites[J]. Comprehensive Composite Materials II,2018,5:421-436.
    [12] Peng Z, Sun W, Xiong X, et al. Microstructure characteristics and ablation behavior of an Al1.92Cr0.08O3-SiC-ZrC anti-ablation coating[J]. New Carbon Materials,2019,34(5):464-471.
    [13] Mi Q, Cao L Y, Huang J Q F, et al. Research progress in matrix oxidation-resistance modification of carbon/carbon composites[J]. Ordnance Material Science and Engineering,2010,33(02):98-103.
    [14] Dietrich S, Gebert J M, Stasiuk G, et al. Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions[J]. Composites Science Technology,2012(72):1892-1900.
    [15] Zhang J P, Fu Q G, Qu J L, et al. Blasting treatment and chemical vapor deposition of SiC nanowires to enhance the thermal shock resistance of SiC coating for carbon/carbon composites in combustion environment[J]. Journal of Alloys and Compounds,2016(666):77-83.
    [16] Li Z Q, Li H J, Cao C W, et al. Investigation on ablation characteristics of C/C composites with ZrC/SiC coating[J]. Journal of Solid Rocket Technology,2011,34(1):105-108.
    [17] Li S P, Zhang M Y, Huang D, et al. Preparation and antioxidation property of a SiC-MoSi2-Si multilayer coating on a C/C composite[J]. New Carbon Materials,2018,33(1):82-87.
    [18] Venugopal S, Paul A, Vaidhyanathan B, et al. Synthesis and spark plasma sintering of submicron HfB2: Effect of various carbon sources[J]. Journal of the European Ceramic Society,2014(34):1471-1479.
    [19] Silvestroni L, Sciti D. Densification of ZrB2-TaSi2 and HfB2-TaSi2 ultra-high-temperature ceramic composites[J]. Journal of the American Ceramic Society,2011(94):1920-1930.
    [20] Talmy I G, Zaykoski J A, Opeka M M. Synthesis, processing and properties of TaC-TaB2-C ceramics[J]. Journal of the European Ceramic Society,2010(30):2253-2256.
    [21] Ren J C, Zhang Y L, Zhang P F, et al. Ablation resistance of HfC coating reinforced by HfC nanowires in cyclic ablation environment[J]. Journal of the European Ceramic Society,2017(37):2759-2768.
    [22] Ren X R, Li H J, Chu Y H, et al. Ultra-high temperature ceramic HfB2-SiC coating for oxidation protection of SiC-coated carbon/carbon composites[J]. International Journal of Applied Ceramic Technology,2015,12(3):560-567. doi: 10.1111/ijac.12241
    [23] Wang P P, Li H J, Yuan R M, et al. The oxidation resistance of two-temperature synthetic HfB2-SiC coating for the SiC coated C/C composites[J]. Journal of Alloys and Compounds,2018,747:438-446. doi: 10.1016/j.jallcom.2018.03.043
    [24] Jiang Y, Liu T Y, Ru H Q, et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials[J]. Journal of Alloys and Compounds,2019,782:761-771. doi: 10.1016/j.jallcom.2018.12.256
    [25] Wang T Y, Luo R Y. Oxidation protection and mechanism of the HfB2-SiC-Si/SiC coatings modified by in-situ strengthening of SiC whiskers for C/C composites[J]. Ceramics International,2018,44(11):12370-12380. doi: 10.1016/j.ceramint.2018.04.025
    [26] Simonenko E P, Simonenko N P, Gordeev A N, et al. Behavior of HfB2-30vol% SiC UHTC obtained by sol-gel approach in the supersonic airflow[J]. Journal of Sol-Gel Science and Technology,2019,92(2):386-397. doi: 10.1007/s10971-019-05029-9
    [27] Wang P P, Li H J, Kong J A, et al. A WSi2-HfB2-SiC coating for ultralong-time anti-oxidation at 1973K[J]. Corrosion Science,2019,159:108-119.
    [28] Zhang J P, Fu Q G, Tong M D, et al. Microstructure, ablation behavior and thermal retardant ability of C/C-HfB2 composites prepared by precursor infiltration pyrolysis combined with chemical vapor infiltration[J]. Journal of Alloys and Compounds,2018,742:123-129. doi: 10.1016/j.jallcom.2018.01.284
    [29] Zhang J P, Qu J L, Fu Q G, et al. Ablation behavior of nose-shaped HfB2-SiC modified carbon/carbon composites exposed to oxyacetylene torch[J]. Corrosion Science,2019,151:87-96. doi: 10.1016/j.corsci.2019.02.015
    [30] Sun J, Fu Q G, Guo L P, et al. Effect of filler on the oxidation protective ability of MoSi2 coating for Mo substrate by halide activated pack cementation[J]. Materials & Design,2016(92):602-609.
    [31] Wang L X, Fu Q G, Zhao F L. Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers[J]. Intermetallics,2018(940):106-113.
    [32] Fu Q Gg, Xue H, Li H J, et al. Anti-oxidation property of a multi-layer coating for carbon/carbon composites in a wind tunnel at 1500 °C[J]. New Carbon Materials,2010,25(4):279-284. doi: 10.1016/S1872-5805(09)60033-0
    [33] Zhang Y L, Li H J, Hu Z X, et al. C/SiC/MoSi2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China,2013(7):2118-2122.
    [34] Zhu L, Zhu Y S, Ren X R, et al. Microstructure, properties and oxidation behavior of MoSi2-MoB-ZrO2 coating for Mo substrate using spark plasma sintering[J]. Surface & Coatings Technology,2019,375:773.
    [35] Chen P, Zhu L, Ren X R, et al. Preparation of oxidation protective MoSi2-SiC coating on graphite using recycled waste MoSi2 by one-step spark plasma sintering method[J]. Ceramics International,2019:22040-22046.
    [36] Chen P, Zhu L, Ren X R, et al. Recycling Waste MoSi2 Heating elements to fabricated MoSi2-based anti-oxidation coatings[J]. Equipment Environmental Engineering,2019,16(10):55-58.
    [37] Zhang Y L, Li H J, Hu Z X, et al. C/SiC/MoSi2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites[J]. Transactions of Nonferrous Metals Society of China,2013,23:2118-2122. doi: 10.1016/S1003-6326(13)62705-3
    [38] Jiang Y, Ye C C, Ru H Q, et al. Oxidation protective MoSi2-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration[J]. Ceramics International,2018,44:5171-5178. doi: 10.1016/j.ceramint.2017.12.122
    [39] Li H J, Xue H, Wang Y J, et al. A MoSi2-SiC-Si oxidation protective coating for carbon/carbon composites[J]. Surface and Coatings Technology,2007,201:9444-9447. doi: 10.1016/j.surfcoat.2007.03.013
    [40] Wang P P, Li H J, Ren X R, et al. HfB2-SiC-MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites[J]. Journal of Alloys and Compounds,2017,722:69-76. doi: 10.1016/j.jallcom.2017.06.008
    [41] Ren X R, Li H J, Fu Q G, et al. TaB2-SiC-Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites[J]. Journal of the European Ceramic Society,2013(15-16):2953-2959.
    [42] Yao D J, Li H J, Liu L, et al. HfB2 prepared by sol-gel method and its oxidation behavior[J]. Rare Metal Materials and Engineering,2013,42(12):2594-2597.
    [43] Silvestroni L, Meriggi G, Sciti D, et al. Oxidation behavior of ZrB2 composites doped with various transition metal silicides[J]. Corrosion Science,2014,83:281-291. doi: 10.1016/j.corsci.2014.02.026
    [44] Wang P P, Li H J, Sun J, et al. The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating[J]. Surface and Coatings Technology,2018,339:124-131. doi: 10.1016/j.surfcoat.2018.02.029
  • 加载中
图(13)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  427
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-05-21
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回