留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes

ZHANG Xiao-hua GAN Xin-yu LIU Bao-sheng YAN Xiao-yan ZHAO Xin-xin

张晓华, 甘欣雨, 刘宝胜, 闫晓燕, 赵新新. 界面自组装构筑空心多孔石墨化炭球及其电化学性能. 新型炭材料, 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8
引用本文: 张晓华, 甘欣雨, 刘宝胜, 闫晓燕, 赵新新. 界面自组装构筑空心多孔石墨化炭球及其电化学性能. 新型炭材料, 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8
ZHANG Xiao-hua, GAN Xin-yu, LIU Bao-sheng, YAN Xiao-yan, ZHAO Xin-xin. An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes. New Carbon Mater., 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8
Citation: ZHANG Xiao-hua, GAN Xin-yu, LIU Bao-sheng, YAN Xiao-yan, ZHAO Xin-xin. An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes. New Carbon Mater., 2021, 36(3): 594-605. doi: 10.1016/S1872-5805(21)60062-8

界面自组装构筑空心多孔石墨化炭球及其电化学性能

doi: 10.1016/S1872-5805(21)60062-8
基金项目: 山西省高等学校科技创新项目(2020L0330);太原科技大学博士科研启动基金(20192054);山西省来晋工作优秀博士科研资助基金(20202075)
详细信息
    通讯作者:

    张晓华. E-mail: xiaohuaz@tyust.edu.cn

    刘宝胜. E-mail: liubaosheng@tyust.edu.cn

  • 中图分类号: TQ127.1+1

An interfacial self-assembly strategy to fabricate graphitic hollow porous carbon spheres for supercapacitor electrodes

More Information
  • 摘要: 独特的空腔结构、丰富的比表面积以及良好的导电性使得空心多孔石墨化炭球在储能领域显示了巨大的应用潜力。通过单宁酸与铁离子的络合作用以及三草酸合铁酸钾的活化和石墨化作用,采用一步炭化法成功制备了空心多孔石墨化炭球,并研究了炭化温度对炭球结构形貌的影响。基于高比表面积、快速的离子扩散通道以及低电阻的石墨化结构,空心多孔石墨化炭球表现出优异的电化学性能。在电流密度为1 A g−1时,比电容达到332.7 F g−1。组装成对称超级电容器在1 mol L−1 Na2SO4电解液中,当功率密度为459.1 W kg−1时,能量密度达到23.7 Wh kg−1,且经10000次循环以后,电容量保持为92.1%。本研究不仅为构筑多孔石墨化炭球提供了一种方法简单、成本较低的无模板自组装法,而且为设计和优化炭球中离子和电子的传输提供了一定的参考价值。
  • FIG. 676.  FIG. 676.

    FIG. 676.. 

    Figure  1.  Scalable fabrication of a Fe–TA complex and its subsequent carbonization to convert into GHPCST.

    Figure  2.  SEM images of all samples: (a) GHPCS700, (b) GHPCS750, (c) GHPCS800, (d) and (e) GHPCS750 and (f) GPC.

    Figure  3.  (a, b) TEM images of GHPCS750 under different magnifications.

    Figure  4.  (a) Nitrogen adsorption–desorption isotherms of GPC and GHPCST, (b) pore size distribution curves of GPC and GHPCST.

    Figure  5.  (a) XRD patterns of GPC and GHPCST, (b) Raman spectra of GPC and GHPCST.

    Figure  6.  (a) XPS survey of GHPCS750, high resolution XPS spectra of (b) C 1s and (c) O 1s.

    Figure  7.  (a) CV curves of GPC and GHPCST at 10 mV s–1, (b) CV curves of GHPCS750 at 10~100 mV s–1, (c) GCD curves of GPC and GHPCST at a current density of 1 A g–1, (d) specific capacitances of all electrodes and (e) cycling stability of GHPCS750 at 100 mV s–1 after 10000 cycles.

    Figure  8.  Electrochemical characteristics of GHPCS750//GHPCS750: (a) CV curves and (b) GCD curves in 6 mol L−1 KOH electrolyte, (c) CV curves with a potential window of 1.0–2.0 V in 1 mol L−1 Na2SO4, (d) CV curves at scan rates of 10–100 mV s–1 with 1.8 V in 1 mol L−1 Na2SO4, (e) GCD curves in 1 mol L−1 Na2SO4, (f) cycling stability for 10000 cycles in 1 mol L−1 Na2SO4, (g) Ragone plots, (h) Nyquist plots, and (i) Bode phase angle plots of GHPCS750//GHPCS750 tested in different electrolytes.

    Table  1.   The porosity properties of GPC and GHPCST.

    SamplesSBET
    (m2 g−1)
    Smic
    (m2 g−1)
    Smesa
    (m2 g−1)
    Dapb
    (nm)
    Vmicc
    (cm3 g−1)
    Vtotal
    (cm3 g−1)
    GPC1072.9763.9281.51.890.420.51
    GHPCS7002005.71644.8339.41.980.930.99
    GHPCS7501541.81147.3378.81.810.640.70
    GHPCS8001250.8965.8274.81.850.530.58
    Note: a mesopore surface area; b average pore size; c micropore volume.
    下载: 导出CSV

    Table  2.   Performance comparison of various carbon spheres.

    Carbon sphereMethodActivation methodSBET
    (m2 g–1)
    T a
    (A g–1)
    C b
    (F g–1)
    Cycling stability cRefs.
    N/O co-doped porous carbon sphereNo templatingKOH activation1963133091.5 % after 10000[7]
    Activation hollow porous carbon spheresHard templatingKOH activation1290130997.6% after 5000[13]
    Hierarchical porous HCSHard templatingSelf-activation339.61287100% after 5000[14]
    N-doped hollow mesoporous carbon sphereHard templating13950.538175.5 % after 10000[16]
    N-doped ordered mesoporous carbon spheresSoft templatingSelf-activation16020.532661.1% after 10000[38]
    N-doped HCS/sheets compositeHard templating12300.5196.578.1% after 10000[39]
    GHPCS750No templatingK3[Fe(C2O4)3] activation–graphitizion1515.61332.792.1% after 10000This work
    Note: a current density; b specific capacitance in three–electrode system; c cycling stability in two-electrode system.
    下载: 导出CSV
  • [1] Zhu Z, Xu Z. The rational design of biomass-derived carbon materials towards next-generation energy storage: A review[J]. Renewable and Sustainable Energy Reviews,2020,134:110308. doi: 10.1016/j.rser.2020.110308
    [2] Perovic M, Qin Q, Oschatz M. From molecular precursors to nanoparticles-tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization[J]. Advanced Functional Materials,2020,30(41):1908371. doi: 10.1002/adfm.201908371
    [3] Luo X, Chen Y, Mo Y. A review of charge storage in porous carbon-based supercapacitors[J]. New Carbon Materials,2021,36(1):49-68. doi: 10.1016/S1872-5805(21)60004-5
    [4] Yang Y, Yuan W, Kang W, et al. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective[J]. Sustainable Energy & Fuels,2020,4(4):1577-1594.
    [5] Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [6] Yu Z, Liu M, Guo D, et al. Radially inwardly aligned hierarchical porous carbon for ultra-long-life lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2020,59(16):6406-6411. doi: 10.1002/anie.201914972
    [7] Qian X, Miao L, Jiang J, et al. Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors[J]. Chemical Engineering Journal,2020,388:124208. doi: 10.1016/j.cej.2020.124208
    [8] Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [9] Liu T, Zhang L, Cheng B, et al. Hollow carbon spheres and their hybrid nanomaterials in electrochemical energy storage[J]. Advanced Energy Materials,2019,9(17):1803900. doi: 10.1002/aenm.201803900
    [10] Xue D, Zhu D, Xiong W, et al. Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(7):7024-7034.
    [11] Cui Y, Qin L, Kang W, et al. Magnetic carbon nanospheres: Synthesis, characterization, and adsorbability towards quinoline from coking wastewater[J]. Chemical Engineering Journal,2020:382.
    [12] Ng S W L, Yilmaz G, Ong W L, et al. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage[J]. Applied Catalysis B: Environmental,2018,220:533-541. doi: 10.1016/j.apcatb.2017.08.069
    [13] Liu J, Wang X, Gao J, et al. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors[J]. Electrochimica Acta,2016,211:183-192. doi: 10.1016/j.electacta.2016.05.217
    [14] Hu D, Chen C, Liu Q. Fabrication of hollow carbon spheres with robust and significantly enhanced capacitance behaviors[J]. Journal of Materials Science,2018,53(17):12310-12321. doi: 10.1007/s10853-018-2425-y
    [15] Wang N, Zhao P, Zhang Q, et al. Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: A facile fabrication and excellent electrochemical performance[J]. Composites Part B: Engineering,2017,113:144-151. doi: 10.1016/j.compositesb.2017.01.041
    [16] Du J, Zhang Y, Wu H, et al. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitors[J]. Carbon,2020,156:523-528. doi: 10.1016/j.carbon.2019.09.091
    [17] Sun H, Zhu Y, Yang B, et al. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle[J]. Journal of Materials Chemistry A,2016,4(31):12088-12097. doi: 10.1039/C6TA04330E
    [18] Qiu D, Gao A, Xie Z, et al. Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors[J]. ACS Appllied Materials & Interfaces,2018,10(51):44483-44493.
    [19] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    [20] Ma F, Sun L, Zhao H, et al. Supercapacitor performance of hollow carbon spheres by direct pyrolysis of melamine-formaldehyde resin spheres[J]. Chemical Research in Chinese Universities, 2013, 29(4): 735-742.
    [21] Tian W, Zhang H, Duan X, et al. Porous carbons: structure-oriented design and versatile applications[J]. Advanced Functional Materials,2020:1909265.
    [22] Wei J, Liang Y, Hu Y, et al. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction[J]. Angewandte Chemie International Edition,2016,55(4):1355-1359. doi: 10.1002/anie.201509024
    [23] Zhang X, Liu B, Yan X, et al. Design and structure optimization of 3D porous graphitic carbon nanosheets for high-performance supercapacitor[J]. Microporous and Mesoporous Materials,2020,309:110580. doi: 10.1016/j.micromeso.2020.110580
    [24] Zhang X, Zhang K, Li H, et al. Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors[J]. Journal of Power Sources,2017,344:176-184. doi: 10.1016/j.jpowsour.2017.01.107
    [25] Zhang X, Li H, Qin B, et al. Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2019,7(7):3298-3306. doi: 10.1039/C8TA11844B
    [26] Chen Q, Tan X, Liu Y, et al. Biomass-derived porous graphitic carbon materials for energy and environmental applications[J]. Journal of Materials Chemistry A,2020,8:5773-5811. doi: 10.1039/C9TA11618D
    [27] Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(32):1903496. doi: 10.1002/adfm.201903496
    [28] Hao L, Ning J, Luo B, et al. Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors[J]. Journal of the American Chemical Society,2014,137(1):219-225.
    [29] Hou J, Jiang K, Wei R, et al. Popcorn-derived porous carbon flakes with an ultrahigh specific surface area for superior performance supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(36):30626-30634.
    [30] Gong Y, Li D, Fu Q, et al. Nitrogen self-doped porous carbon for high-performance supercapacitors[J]. ACS Applied Energy Materials,2020,3(2):1585-1592. doi: 10.1021/acsaem.9b02077
    [31] Zhang X, Li H, Zhang K, et al. Strategy for preparing porous graphitic carbon for supercapacitor: Balance on porous structure and graphitization degree[J]. Journal of the Electrochemical Society,2018,165(10):A2084-A2092. doi: 10.1149/2.0491910jes
    [32] Sun N, Li Z, Zhang X, et al. Hierarchical porous carbon materials derived from kelp for superior capacitive applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8735-8743.
    [33] Liu M, Niu J, Zhang Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    [34] Yao Y, Zhang Y, Li L, et al. Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(40):34944-34953.
    [35] Rose M, Kockrick E, Senkovska I, et al. High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors[J]. Carbon,2010,48(2):403-407. doi: 10.1016/j.carbon.2009.09.043
    [36] Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. doi: 10.1126/science.1239089
    [37] Wang D, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie International Edition,2008,47(2):373-376. doi: 10.1002/anie.200702721
    [38] Du J, Liu L, Yu Y, et al. N-doped ordered mesoporous carbon spheres derived by confined pyrolysis for high supercapacitor performance[J]. Journal of Materials Science & Technology,2019,35(10):2178-2186.
    [39] Du J, Liu L, Yu Y, et al. N-doped hollow carbon spheres/sheets composite for electrochemical capacitor[J]. ACS Applied Materials & Interfaces,2018,10(46):40062-40069.
    [40] Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: a new preparation methodology for high-volumetric capacitance electrode materials[J]. Journal of Materials Chemistry A,2016,4(25):9832-9843. doi: 10.1039/C6TA02673G
    [41] Li Y, Liu S, Liang Y, et al. Bark-based 3D porous carbon nanosheet with ultrahigh surface area for high performance supercapacitor electrode material[J]. ACS Sustainable Chemistry & Engineering,2019,7:13827-13835.
    [42] Liu B, Liu Y, Chen H, et al. Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors[J]. Journal of Power Sources,2017,341:309-317. doi: 10.1016/j.jpowsour.2016.12.022
    [43] Sun L, Tian C, Fu Y, et al. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors[J]. Chemistry-A European Journal,2014,20(2):564-574. doi: 10.1002/chem.201303345
    [44] Wang Q, Qin B, Zhang X, et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2018,40(6):19653-19663.
    [45] Sun L, Tian C, Li M, et al. From coconut shell to porous graphene-like nanosheets for high-power supercapacitors[J]. Journal of Materials Chemistry A,2013,1(21):6462-6470. doi: 10.1039/c3ta10897j
    [46] Ma F, Ma D, Wu G, et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors[J]. Chemical Communications,2016,52(40):6673-6676. doi: 10.1039/C6CC02147F
    [47] Wang Q, Qin B, Li H X, et al. Honeycomb-like carbon with tunable pore size from bio-oil for supercapacitor[J]. Microporous and Mesoporous Materials,2020,309:110551. doi: 10.1016/j.micromeso.2020.110551
    [48] Zhang X, Wang X, Jiang L, et al. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons[J]. Journal of Power Sources,2012,216:290-296. doi: 10.1016/j.jpowsour.2012.05.090
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  5908
  • HTML全文浏览量:  730
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-05-08
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回