留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Non-layered transition metal carbides for energy storage and conversion

GAO Yin-hong NAN Xu YANG Yao SUN Bing XU Wen-li Wandji Djouonkep Lesly Dasilva LI Xuan-ke LI Yan-jun ZHANG Qin

高银红, 南旭, 阳尧, 孙兵, 徐文莉, WandjiDjouonkep Lesly Dasilva, 李轩科, 李艳军, 张琴. 非层状过渡金属碳化物在能源存储与转换中的应用进展[J]. 新型炭材料, 2021, 36(4): 751-778. doi: 10.1016/S1872-5805(21)60065-3
引用本文: 高银红, 南旭, 阳尧, 孙兵, 徐文莉, WandjiDjouonkep Lesly Dasilva, 李轩科, 李艳军, 张琴. 非层状过渡金属碳化物在能源存储与转换中的应用进展[J]. 新型炭材料, 2021, 36(4): 751-778. doi: 10.1016/S1872-5805(21)60065-3
GAO Yin-hong, NAN Xu, YANG Yao, SUN Bing, XU Wen-li, Wandji Djouonkep Lesly Dasilva, LI Xuan-ke, LI Yan-jun, ZHANG Qin. Non-layered transition metal carbides for energy storage and conversion[J]. NEW CARBON MATERIALS, 2021, 36(4): 751-778. doi: 10.1016/S1872-5805(21)60065-3
Citation: GAO Yin-hong, NAN Xu, YANG Yao, SUN Bing, XU Wen-li, Wandji Djouonkep Lesly Dasilva, LI Xuan-ke, LI Yan-jun, ZHANG Qin. Non-layered transition metal carbides for energy storage and conversion[J]. NEW CARBON MATERIALS, 2021, 36(4): 751-778. doi: 10.1016/S1872-5805(21)60065-3

非层状过渡金属碳化物在能源存储与转换中的应用进展

doi: 10.1016/S1872-5805(21)60065-3
基金项目: 国家自然科学基金青年项目(51902232)
详细信息
    通讯作者:

    李艳军,副教授. E-mail: yanwatercn@wust.edu.cn

    张 琴,副教授. E-mail: zhangqin627@wust.edu.cn

  • 中图分类号: TQ152

Non-layered transition metal carbides for energy storage and conversion

More Information
  • 摘要: 非层状过渡金属碳化物(NL-TMCs)具有多样化的形貌结构和可调控的化学计量比,从而表现出高比容量、高导电性和良好的稳定性等优异的电/催化性能。因此,本文对NL-TMCs在储能与转换领域的最新进展进行了总结。首先阐述了NL-TMCs的可控制备策略,其中包括碳热还原法、化学气相沉积法、模板辅助法、水热/溶剂热法。其次,探讨了NL-TMCs在锂离子电池、锂硫电池、全水解等能源储存与转换领域中应用,并对其未来的发展方向进行了展望,为合理地设计和构建NL-TMCs以供实际应用提供了理论基础。
  • FIG. 782.  FIG. 782.

    FIG. 782.. 

    Figure  1.  Schematic illustration of the major applications of NL-TMCs [153,134,118,125,185]. Reproduced with permission.

    Figure  2.  (a) Schematic of the preparation of Pt/MMC[34]. Reproduced with permission. (b) Interaction mediator and valence control of MoxC, (c) synthesis scheme for valence-controlled MoxC[84]. Reproduced with permission

    Figure  3.  (a) Schematic of the preparation process, (b) SEM image, (c) HAADF-STEM image of Co6Mo6C2/NCRGO composite[90]. Reproduced with permission. (d) Schematic illustration for the synthesis of NbC[96]. Reproduced with permission.

    Figure  4.  (a) (Bottom frame) comparison of the rate performances of MoC-Mo2C-hnws, Mo2C-nws and MoC-nws; (Top frame) The corresponding coulombic efficiency of MoC-Mo2C-hnws. (b) Comparison of the initial discharge/charge curves, and (c) The lithium storage mechanisms of MoC-Mo2C-hnws[118]. Reproduced with permission.

    Figure  5.  BP/TiC2 heterostructure with one Li atom: (a,b) Considered migration paths and diffusion barrier, (c-e) three kinds of charge density[120]. Reproduced with permission. (f-g) The corresponding diffusion energy barrier profiles on VC2 and V1/2Mn1/2C2[122]. Reproduced with permission.

    Figure  6.  WxC electrode for LSBs: (a) Adsorption energies of elemental sulfur and different PS. Energy profiles for the splitting of lithiated (b) Li4S8 to Li2S4, and (c) Li4S4 to Li2S2 on S-W2C, S-WC and graphene. (d) Cycling performance of WxC/md-C and md-C. (e) Long-cycling performance of WxC/md-C at a high current rate[126]. Reproduced with permission.

    Figure  7.  NCM for LSBs: (a) SEM images of the cross-section of NCM, (b) Schematic diagram of the conventional/improved LSBs, (c) HRTEM image of NbC, (d) Rate performance, (e) Charge-discharge voltage profiles of the LSBs at different currents, (f) Cycling performance at 2 C of the cells[96]. Reproduced with permission.

    Figure  8.  (a) Schematic illustration of the OER on the mesoporous TiC-C electrode. (b) The discharge/charge curves[134]. Reproduced with permission. Mo2C/CNT for LOBs. (c) Cycling performance[141]. Reproduced with permission. α-MoC1-x for LOBs. (d) The first discharge/charge profiles[142]. Reproduced with permission. (e) Cycling performance of the LOBs with MoC1-x/HSC and HSC electrodes[143]. Reproduced with permission.

    Figure  9.  Representative modified Mo2C for HER. (a) The stability, (b) long-term durability test at η = 160 mV of Co-Mo2C-0.020[163]. Reproduced with permission. (c-e) Electrochemical impedance spectroscopy results, calculated thermodynamic energy diagram, and optimized side and top views with one adsorbed hydrogen atom of Mo2C-Co and Mo2-xWxC, respectively[165]. Reproduced with permission.

    Figure  10.  (a) MeOH tolerance ability, and (b) stability of CoFe carbide/NG catalyst compare with commercial Pt/C for ORR. Reproduced with permission[182]. (c) Schematic diagram of the possible ORR mechanism for the metal and N co-doped TiC[183]. Reproduced with permission.

    Table  1.   Synthetic methods and corresponding applications of NL-TMCs.

    MaterialsMorphologySynthesisRefs.
    Mo-based carbides
    HP-Mo2C-CHierarchically porous particlesFreeze-drying/calcinations[110]
    Mo2C-CMesoporous nanospheresSolvothermal/carbonization[111]
    α-MoC1–x, β-Mo2CMicro-sized rodsMOF-template[142]
    mNi-NCNT-MoC-CHierarchical multiroom-structuredSpray drying/CVD[144]
    Mo2CFibersPolymerization/pyrolysis[137]
    Mo2C/CNTNanotubesBall milling and calcinations[141]
    MoC1–x/HSC3D nanocluster hollow nanospheresPolymerization/pyrolysis[143]
    Mo2C@HNCPsPolyhedronsMOF-template[75]
    Mo2C@NPC/CCInterconnected walnut-like porous structureElectropolymerization/pyrolysis[151]
    MoCx/SWNTsNanoparticlesTemplate[158]
    NiMo2C/NFNanowiresHydrothermal/carburization[162]
    α-Mo2CNanoparticlescarbothermal reduction[160]
    Co/Fe-based carbide
    Fe2O3/Fe3C-Graphene3D nanoporous thin filmLow-temperature CVD[97]
    (Fe1–xCox)5C2NanoparticlesWet-chemistry strategy[168]
    Co2CNanoparticlesBromide-assisted wet-chemistry strategy[166]
    Co-Ni3C/Ni @ CCubicMOF-template[65]
    CoFe carbide/NGNanosheetsRefluxing/anneal[182]
    b-CNT/Fe3C NPBamboo-like nanotube/nanoparticleTemplate[62]
    Others
    TiC/NiO core/shellNnanowiresBiotemplated[103]
    TiCNanoparticlesMg-assisted carbothermal reduction[17]
    TiC NPs-CNFsNanofibersTemplate[71]
    G-TiCNanosheetsCVD[130]
    TiC-COrdered mesoporousEISAa/in situ carbothermal reduction[134]
    V0.28Co2.72C/CNFsNanofibersElectrospinning[176]
    Ta0.3W0.7CNanoparticlesReverse microemulsion method[149]
    Ni/WC@NCNanoparticlesHydrothermal/carbonization[152]
    WN-W2CCore-shell nanoparticlesSolvothermal/carbonized[150]
    WCNanoparticlesHydrothermal/carbonization[184]
    WxC/TiOxCyFilmUHVb-CVD[185]
    Note: aEISA: solvent-evaporation-induced-self-assembly; bUHV: ultrahigh vacuum
    下载: 导出CSV
  • [1] Yu X, Qu B, Zhao Y, et al. Growth of hollow transition metal (Fe, Co, Ni) oxide nanoparticles on graphene sheets through Kirkendall effect as anodes for high-performance lithium-ion batteries[J]. Chemistry,2016,22(5):1638-1645. doi: 10.1002/chem.201503897
    [2] Zeng F, Broicher C, Hofmann J P, et al. Facile synthesis of sulfur-containing transition metal (Mn, Fe, Co, and Ni) (hydr)oxides for efficient oxygen evolution reaction[J]. ChemCatChem,2019,12(3):710-716.
    [3] Ji Q, Zhang Y, Shi J, et al. Morphological engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution[J]. Advanced Materials,2016,28(29):6207-6212. doi: 10.1002/adma.201504762
    [4] Gupta U, Rao C N R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides[J]. Nano Energy,2017,41:49-65. doi: 10.1016/j.nanoen.2017.08.021
    [5] Wang X, Kim H M, Xiao Y, et al. Nanostructured metal phosphide-based materials for electrochemical energy storage[J]. Journal of Materials Chemistry A,2016,4(39):14915-14931. doi: 10.1039/C6TA06705K
    [6] Liu P, Zhang Z X, Jun S W, et al. Controlled synthesis of nickel phosphide nanoparticles with pure-phase Ni2P and Ni12P5 for hydrogenation of nitrobenzene[J]. Reaction Kinetics, Mechanisms and Catalysis,2019,126(1):453-461. doi: 10.1007/s11144-018-1496-8
    [7] Gupta S, Patel M K, Miotello A, et al. Metal boride-based catalysts for electrochemical water-splitting: A review[J]. Advanced Functional Materials,2019,30(1):1906481.
    [8] Ahmad S, Ashraf I, Mansoor M A, et al. An overview of recent advances in the synthesis and applications of the transition metal carbide nanomaterials[J]. Nanomaterials,2021,11(3):776. doi: 10.3390/nano11030776
    [9] Xiao Y, Sun P P, Cao M H. Core-shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage[J]. ACS Nano,2014,8(8):7846-7857. doi: 10.1021/nn501390j
    [10] Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials,2018,30(52):1804779. doi: 10.1002/adma.201804779
    [11] Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [12] Cao M S, Cai Y Z, He P, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Joural,2019,359:1265-1302. doi: 10.1016/j.cej.2018.11.051
    [13] Xu H, Ren A, Wu J, et al. Recent advances in 2D MXenes for photodetection[J]. Advanced Functional Materials,2020,30(24):2000907. doi: 10.1002/adfm.202000907
    [14] Xu B, Zhi C, Shi P. Latest advances in MXene biosensors[J]. Journal of Physics: Materials,2020,3(3):031001. doi: 10.1088/2515-7639/ab8f78
    [15] Wang L, Li Z, Wu Q, et al. Layered structure-based materials: Challenges and opportunities for radionuclide sequestration[J]. Environmental Science: Nano,2020,7(3):724-752. doi: 10.1039/C9EN01429B
    [16] Ma Y, Yang T, Zou H, et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia[J]. Advanced Materials,2020,32(33):2002177. doi: 10.1002/adma.202002177
    [17] Al Salem H, Chitturi V R, Babu G, et al. Stabilizing polysulfide-shuttle in a Li-S battery using transition metal carbide nanostructures[J]. RSC advances,2016,6(111):110301-110306. doi: 10.1039/C6RA22434B
    [18] Liu Y, Kelly T G, Chen J G, et al. Metal carbides as alternative electrocatalyst supports[J]. ACS Catalysis,2013,3(6):1184-1194. doi: 10.1021/cs4001249
    [19] Pajares A, Prats H, Romero A, et al. Critical effect of carbon vacancies on the reverse water gas shift reaction over vanadium carbide catalysts[J]. Applied Catalysis B: Environmental,2020,267:118719. doi: 10.1016/j.apcatb.2020.118719
    [20] Liu X, Feng G, Li Y, et al. Novel interlayer on the separator with the Cr3C2 compound as a robust polysulfide anchor for lithium-sulfur batteries[J]. Industrial & Engineering Chemistry Research,2020,59(16):7538-7545.
    [21] Liu X, Li X, Sun Y, et al. Onion-like carbon coated Fe3C nanocapsules embedded in porous carbon for the stable lithium-ion battery anode[J]. Applied Surface Science,2019,479:318-325. doi: 10.1016/j.apsusc.2019.02.098
    [22] Song H W, Su J, Wang C X. Vacancies revitalized Ni3ZnC0.7 bimetallic carbide hybrid electrodes with multiplied charge-storage capability for high-capacity and stable-cyclability lithium-ion storage[J]. ACS Applied Energy Materials,2018,1(9):5008-5015. doi: 10.1021/acsaem.8b00992
    [23] Yu H, Fan H, Wang J, et al. 3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage[J]. Nanoscale,2017,9(21):7260-7267. doi: 10.1039/C7NR01717K
    [24] Zhao Y, Wang L P, Sougrati M T, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J]. Advanced Energy Materials,2017,7(9):1601424. doi: 10.1002/aenm.201601424
    [25] Yun Q B, Lu Q P, Zhang X, et al. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angewandte Chemie International Edition,2018,57(3):626-646. doi: 10.1002/anie.201706426
    [26] Lin Z X, Chen R, Qu Z P, et al. Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: From model surfaces to powder catalysts[J]. Green Chemistry,2018,20(12):2679-2696. doi: 10.1039/C8GC00239H
    [27] Porosoff M D, Kattel S, Li W, et al. Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides[J]. Chemical Communications,2015,51(32):6988-6991. doi: 10.1039/C5CC01545F
    [28] Zhang Q, Tackett B M, Wu Q Y, et al. Trends in hydrogen evolution activity of metal-modified molybdenum carbides in alkaline and acid electrolytes[J]. ChemElectroChem,2016,3(10):1686-1693. doi: 10.1002/celc.201600171
    [29] Chen W F, Muckerman J T, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts[J]. Chemical Communications,2013,49(79):8896-8909. doi: 10.1039/c3cc44076a
    [30] Chen M, Liu J, Zhou W, et al. Nitrogen-doped graphene-supported transition-metals carbide electrocatalysts for oxygen reduction reaction[J]. Scientific Reports,2015,5:10389. doi: 10.1038/srep10389
    [31] Zhang X, Shi C, Chen B B, et al. Progress in hydrogen production over transition metal carbide catalysts: Challenges and opportunities[J]. Current Opinion in Chemical Engineering,2018,20:68-77. doi: 10.1016/j.coche.2018.02.010
    [32] Sahoo S K, Ye Y, Lee S, et al. Rational design of TiC-supported single-atom electrocatalysts for hydrogen evolution and selective oxygen reduction reactions[J]. ACS Energy Letters,2018,4(1):126-132.
    [33] Tackett B M, Kimmel Y C, Chen J G G. Metal-modified niobium carbides as low-cost and impurity-resistant electrocatalysts for hydrogen evolution in acidic and alkaline electrolytes[J]. International Journal of Hydrogen Energy,2016,41(14):5948-5954. doi: 10.1016/j.ijhydene.2016.01.167
    [34] Baek D S, Jung G Y, Seo B, et al. Ordered mesoporous metastable α-MoC1−x with enhanced water dissociation capability for boosting alkaline hydrogen evolution activity[J]. Advanced Functional Materials,2019,29(28):1901217. doi: 10.1002/adfm.201901217
    [35] Abolaji R S, Bingxue Z, Anbalgam K, et al. Synthesis and application of nano-structured metal nitrides and carbides: A review[J]. Progress in Solid State Chemistry,2018,50:1-15. doi: 10.1016/j.progsolidstchem.2018.05.001
    [36] Terry B, Azubike D, Chryanthou A. Carbothermic reduction as a potential means for the direct production of Fe-WC and Fe-TaC, NbC metal-matrix composites[J]. Journal of Materials Science,1994,29(16):4300-4305. doi: 10.1007/BF00414214
    [37] Koc R, Kodambaka S K. Tungsten carbide (WC) synthesis from novel precursors[J]. Journal of the European Ceramic Society,2000,20(11):1859-1869. doi: 10.1016/S0955-2219(00)00038-8
    [38] Hassine N A, Binner J G P, Cross T E. Synthesis of refractory metal carbide powders via microwave carbothermal reduction[J]. International Journal of Refractory Metals and Hard Materials,1995,13(6):353-358. doi: 10.1016/0263-4368(95)00035-H
    [39] Ahlén N, Johnsson M, Nygren M. Carbothermal synthesis of TiC whiskers via a vapor-iquid-olid growth mechanism[J]. Journal of the American Ceramic Society,1996,79(11):2803-2808. doi: 10.1111/j.1151-2916.1996.tb08711.x
    [40] Cao R X, Liu C R, Wu Z S, et al. Modified carbothermal synthesis of TiC whiskers[J]. Journal of Materials Science & Technology,2011,27(11):1006-1010.
    [41] Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction[J]. Materials Research Bulletin,2001,36(13-14):2263-2275. doi: 10.1016/S0025-5408(01)00713-9
    [42] Regmi Y N, Leonard B M. General synthesis method for bimetallic carbides of group VIIIA first row transition metals with molybdenum and tungsten[J]. Chemistry of Materials,2014,26(8):2609-2616. doi: 10.1021/cm500076v
    [43] Wyvratt B M, Gaudet J R, Thompson L T. Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water-gas shift catalysts[J]. Journal of Catalysis,2015,330:280-287. doi: 10.1016/j.jcat.2015.07.023
    [44] Araujo C P B, De S C P, Maia L M D, et al. On the synthesis of molybdenum carbide with cobalt addition via gas-solid reactions in a CH4/H2 atmosphere[J]. Brazilian Journal of Chemical Engineering,2016,33(3):577-588. doi: 10.1590/0104-6632.20160333s20150107
    [45] Mehdad A, Jentoft R E, Jentoft F C. Single-phase mixed molybdenum-tungsten carbides: Synthesis, characterization and catalytic activity for toluene conversion[J]. Catalysis Today,2019,323:112-122. doi: 10.1016/j.cattod.2018.06.037
    [46] Kim K W, Kim B J, Lee S H, et al. Growth of NbC thin film using CH4 as a carbon source and reducing agent[J]. Coatings,2018,8(11):379. doi: 10.3390/coatings8110379
    [47] Zhang H C, Yu X D, Nie Z H, et al. Microstructure and growth mechanism of tungsten carbide coatings by atmospheric CVD[J]. Surface & Coatings Technology,2018,344:85-92.
    [48] Koizumi R, Ozden S, Samanta A, et al. Origami‐inspired 3D interconnected molybdenum carbide nanoflakes[J]. Advanced Materials Interfaces,2018,5(6):1701113. doi: 10.1002/admi.201701113
    [49] Hirai D, Tanaka H, Nishio-Hamane D, et al. Synthesis of anti-perovskite-type carbides and nitrides from metal oxides and melamine[J]. RSC Advances,2018,8(73):42025-42031. doi: 10.1039/C8RA07581F
    [50] Saponjic A, Saponjic D, Perovic I, et al. Synthesis and characterization of Co-Mo bimetallic carbides[J]. Science of Sintering,2019,51(3):319-326. doi: 10.2298/SOS1903319S
    [51] Li J, Tang C, Liang T T, et al. Porous molybdenum carbide nanostructured catalyst toward highly sensitive biomimetic sensing of H2O2[J]. Electroanalysis,2020,32(6):1243-1250. doi: 10.1002/elan.202000008
    [52] Zhu J, Yao Y, Chen Z, et al. Controllable synthesis of ordered mesoporous Mo2C@graphitic carbon core-shell nanowire arrays for efficient electrocatalytic hydrogen evolution[J]. ACS Applied Materials & Interfaces,2018,10(22):18761-18770.
    [53] Zhu J X, Sakaushi K, Clavel G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting[J]. Journal of the American Chemical Society,2015,137(16):5480-5485. doi: 10.1021/jacs.5b01072
    [54] Hardy D A, Nguyen E T, Parrish S E, et al. Prussian blue iron-cobalt mesocrystals as a template for the growth of Fe/Co carbide (cementite) and Fe/Co nanocrystals[J]. Chemistry of Materials,2019,31(19):8163-8173. doi: 10.1021/acs.chemmater.9b02957
    [55] Zhang H, Cui H, Li J, et al. Frogspawn inspired hollow Fe3C@N-C as an efficient sulfur host for high-rate lithium-sulfur batteries[J]. Nanoscale,2019,11(44):21532-21541. doi: 10.1039/C9NR07388D
    [56] Chen Y Y, Zhang Y, Jiang W J, et al. Pomegranate-like N, P-Doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution[J]. ACS Nano,2016,10(9):8851-8860. doi: 10.1021/acsnano.6b04725
    [57] Yang Y, Luo M, Xing Y, et al. A universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M = P, S, C and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage[J]. Advanced Materials,2018,30(18):1706085. doi: 10.1002/adma.201706085
    [58] Kim J, Mcnamara N D, Hicks J C. Catalytic activity and stability of carbon supported V oxides and carbides synthesized via pyrolysis of MIL-47 (V)[J]. Applied Catalysis A: General,2016,517:141-150. doi: 10.1016/j.apcata.2016.03.011
    [59] Li X, Westwood A, Brown A, et al. A convenient, general synthesis of carbide nanofibres via templated reactions on carbon nanotubes in molten salt media[J]. Carbon,2009,47(1):201-208. doi: 10.1016/j.carbon.2008.09.050
    [60] Alhajri N S, Anjum D H, Hedhili M N, et al. Generation and characteristics of IV-VI transition metal nitride and carbide nanoparticles using a reactive mesoporous carbon nitride[J]. ChemistrySelect,2016,1(2):290-296. doi: 10.1002/slct.201600097
    [61] Wei Y H, Wang B Y, Zhang Y, et al. Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li-S full batteries[J]. Advanced Functional Materials,2021,31(3):2006033. doi: 10.1002/adfm.202006033
    [62] Yang W X, Liu X J, Yue X Y, et al. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction[J]. Journal of the American Chemical Society,2015,137(4):1436-1439. doi: 10.1021/ja5129132
    [63] Hunt S T, Milina M, Alba-Rubio A C, et al. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts[J]. Science,2016,352(6288):974-978. doi: 10.1126/science.aad8471
    [64] Meng T, Zheng L R, Qin J W, et al. A three-dimensional hierarchically porous Mo2C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage[J]. Journal of Materials Chemistry A,2017,5(38):20228-20238. doi: 10.1039/C7TA05946A
    [65] Wu C, Li J. Unique hierarchical Mo2C/C nanosheet hybrids as active electrocatalyst for hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces,2017,9(47):41314-41322.
    [66] Jia X X, Wang M H, Liu G, et al. Mixed-metal MOF-derived Co-doped Ni3C/Ni NPs embedded in carbon matrix as an efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy,2019,44(45):24572-24579. doi: 10.1016/j.ijhydene.2019.07.144
    [67] Wang M, Dipazir S, Lu P, et al. Synthesis of polyoxometalates derived bifunctional catalyst towards efficient overall water splitting in neutral and alkaline medium[J]. Journal of Colloid and Interface Science,2018,532:774-781. doi: 10.1016/j.jcis.2018.08.040
    [68] Wan J, Wu J B, Gao X, et al. Structure confined porous Mo2C for efficient hydrogen evolution[J]. Advanced Functional Materials,2017,27(45):1703933. doi: 10.1002/adfm.201703933
    [69] Leonard B M, Waetzig G R, Clouser D A, et al. Salt flux synthesis of single and bimetallic carbide nanowires[J]. Materials Research Express,2016,3(7):074002. doi: 10.1088/2053-1591/3/7/074002
    [70] Ochoa E, Torres D, Moreira R, et al. Carbon nanofiber supported Mo2C catalysts for hydrodeoxygenation of guaiacol: The importance of the carburization process[J]. Applied Catalysis B-Environmental,2018,239:463-474. doi: 10.1016/j.apcatb.2018.08.043
    [71] Zhou F, Song L T, Lu L L, et al. Titanium-carbide-decorated carbon nanofibers as hybrid electrodes for high performance Li-S batteries[J]. ChemNanoMat,2016,2(10):937-941. doi: 10.1002/cnma.201600227
    [72] Weng M M, Liu D J, He X Q, et al. Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media[J]. International Journal of Hydrogen Energy,2019,44(39):21506-21517. doi: 10.1016/j.ijhydene.2019.06.062
    [73] Su Q, Su Z, Xie W, et al. Preparation of 2D nitrogen-doped magnetic Fe3C/C by in-situ self-assembled double-template method for enhanced removal of Cr(VI)[J]. Environmental Pollution,2020,263:114374. doi: 10.1016/j.envpol.2020.114374
    [74] Roy S, Bagchi D, Vemuri V, et al. Deconvolution of phase-size-strain effects in metal carbide nanocrystals for enhanced hydrogen evolution[J]. Nanoscale,2020,12(28):15414-15425. doi: 10.1039/D0NR03794J
    [75] Chai L L, Zhang L J, Wang X, et al. Construction of hierarchical Mo2C nanoparticles onto hollow N-doped carbon polyhedrons for efficient hydrogen evolution reaction[J]. Electrochimica Acta,2019,321:134680. doi: 10.1016/j.electacta.2019.134680
    [76] Li R, Li X D, Yu D S, et al. Ni3ZnC0.7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting[J]. Carbon,2019,148:496-503. doi: 10.1016/j.carbon.2019.04.002
    [77] Jia W, Zhang J, Le F, et al. Dual-nitrogen-source strategy for N-doped graphitic layer-wrapped metal carbide toward efficient oxygen reduction reaction[J]. Journal of Colloid and Interface Science,2020,567:165-170. doi: 10.1016/j.jcis.2020.02.005
    [78] Liu K, Peng Z G, Wang H Y, et al. Fe3C@Fe/N doped graphene-like carbon sheets as a highly efficient catalyst in Al-air batteries[J]. Journal of The Electrochemical Society,2017,164(6):F475-F483. doi: 10.1149/2.0171706jes
    [79] Cheng H, Garcia-Araez N, Hector A L, et al. Synthesis of hard carbon-TiN/TiC composites by reacting cellulose with TiCl4 followed by carbothermal nitridation/reduction[J]. Inorganic Chemistry,2019,58(9):5776-5786. doi: 10.1021/acs.inorgchem.9b00116
    [80] Chen T, Li M, Song S, et al. Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor[J]. Nano Energy,2020,71:104549. doi: 10.1016/j.nanoen.2020.104549
    [81] Xiong X, Jiang R, Deng B W, et al. Bionic structural design and electrochemical manufacture of WC/N-doped carbon hybrids as efficient ORR catalyst[J]. Journal of The Electrochemical Society,2020,167(6):064502. doi: 10.1149/1945-7111/ab7b82
    [82] Huang M Z, Zeng W Y, Zhu Z W. Facile synthesis of porous Mo2C/C composites by using luffa sponge-derived carbon template in molten salt media[J]. Royal Society Open Science,2019,6(6):190547. doi: 10.1098/rsos.190547
    [83] Ihsan M, Wang H Q, Majid S R, et al. MoO2/Mo2C/C spheres as anode materials for lithium ion batteries[J]. Carbon,2016,96:1200-1207. doi: 10.1016/j.carbon.2015.10.076
    [84] Kim S, Choi C, Hwang J, et al. Interaction mediator assisted synthesis of mesoporous molybdenum carbide: mo-valence state adjustment for optimizing hydrogen evolution[J]. ACS Nano,2020,14(4):4988-4999. doi: 10.1021/acsnano.0c01285
    [85] Devaraju M K, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium‐ion batteries[J]. Advanced Energy Materials,2012,2(3):284-297. doi: 10.1002/aenm.201100642
    [86] Xu W T, Zhou Y F, Huang D C, et al. Synthesis and pyrolysis evolution of glucose-derived hydrothermal precursor for nanosized zirconium carbide[J]. Ceramics International,2016,42(9):10655-10663. doi: 10.1016/j.ceramint.2016.03.171
    [87] Gao W, Shi Y Q, Zhang Y F, et al. Molybdenum carbide anchored on graphene nanoribbons as highly efficient all-pH hydrogen evolution reaction electrocatalyst[J]. ACS Sustainable Chemistry & Engineering,2016,4(12):6313-6321.
    [88] Tan Q, Chen X, Wan H, et al. Metal-organic framework-derived high conductivity Fe3C with porous carbon on graphene as advanced anode materials for aqueous battery-supercapacitor hybrid devices[J]. Journal of Power Source,2020,448:227403. doi: 10.1016/j.jpowsour.2019.227403
    [89] Xiao P, Ge X, Wang H, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Advanced Functional Materials,2015,25(10):1520-1526. doi: 10.1002/adfm.201403633
    [90] Tang Y J, Liu C H, Huang W, et al. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction[J]. ACS Applied Materials & Interfaces,2017,9(20):16978-16986.
    [91] Kim S K, Qiu Y, Zhang Y J, et al. Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction[J]. Applied Catalysis B: Environmental,2018,235:36-44. doi: 10.1016/j.apcatb.2018.04.032
    [92] Zhang J, Wang S, Li W. Nano-scale 1TaC-3HfC solid solution powder synthesized using a solvothermal method and its densification[J]. Ceramics International,2019,45(1):1455-1459. doi: 10.1016/j.ceramint.2018.09.292
    [93] Qiao L, Zhao W, Qin Y, et al. Controlled growth of a hierarchical nickel carbide “dandelion” nanostructure[J]. Angewandte Chemie International Edition,2016,55(28):8023-8026. doi: 10.1002/anie.201603456
    [94] Brar L K, Singla G, Pandey O P. Evolution of structural and thermal properties of carbon-coated TaC nanopowder synthesized by single step reduction of Ta-ethoxide[J]. RSC Advances,2015,5(2):1406-1416. doi: 10.1039/C4RA12105H
    [95] Brar L K, Singla G, Pandey O P. The role of carbon in structural evolution during single step synthesis of nano tantalum carbide[J]. RSC Advances,2016,6(110):109174-109184. doi: 10.1039/C6RA24484J
    [96] Cai W, Li G, Zhang K, et al. Conductive nanocrystalline niobium carbide as high‐efficiency polysulfides tamer for lithium‐sulfur batteries[J]. Advanced Functional Materials,2018,28(2):1704865. doi: 10.1002/adfm.201704865
    [97] Yang Y, Fan X J, Casillas G, et al. Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries[J]. ACS Nano,2014,8(4):3939-3946. doi: 10.1021/nn500865d
    [98] Yang X, Li Q, Wang H J, et al. In-situ carbonization for template-free synthesis of MoO2-Mo2C-C microspheres as high-performance lithium battery anode[J]. Chemical Engineering Journal,2018,337:74-81. doi: 10.1016/j.cej.2017.12.072
    [99] Li X Y, Xiao Q G, Zhang H L, et al. Fabrication and application of hierarchical mesoporous MoO2/Mo2C/C microspheres[J]. Journal of Energy Chemistry,2018,27(3):940-948. doi: 10.1016/j.jechem.2017.09.008
    [100] Yang L C, Li X, Ouyang Y P, et al. Hierarchical MoO2/Mo2C/C hybrid nanowires as high-rate and long life anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(31):19987-19993.
    [101] Li H, Ye H, Xu Z, et al. Freestanding MoO2/Mo2C imbedded carbon fibers for Li-ion batteries[J]. Physical Chemistry Chemical Physics,2017,19(4):2908-2914. doi: 10.1039/C6CP07569J
    [102] Hou C, Wang J, Du W, et al. One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage[J]. Journal of Materials Chemistry A,2019,7(22):13460-13472. doi: 10.1039/C9TA03551F
    [103] Huang H, Feng T, Gan Y, et al. TiC/NiO core/shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-ion battery[J]. ACS Applied Materials & Interfaces,2015,7(22):11842-11848.
    [104] Sun W, Hu R Z, Liu H, et al. Silicon/wolfram carbide@graphene composite: Enhancing conductivity and structure stability in amorphous-silicon for high lithium storage performance[J]. Electrochimica Acta,2016,191:462-472. doi: 10.1016/j.electacta.2016.01.096
    [105] Su L, Zhou Z, Shen P. Core-shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries[J]. Electrochimica Acta,2013,87:180-185. doi: 10.1016/j.electacta.2012.09.003
    [106] Yang J, Zhang X L, Zhou X Y, et al. Controlled synthesis of nickel carbide nanoparticles and their application in lithium storage[J]. Chemical Engineering Journal,2018,352:940-946. doi: 10.1016/j.cej.2018.06.066
    [107] Huang Y G, Lin X L, Zhang X H, et al. Fe3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries[J]. Electrochimica Acta,2015,178:468-475. doi: 10.1016/j.electacta.2015.08.054
    [108] Wu Q, Yan D, Li X F, et al. Promoting electrochemical performances of vanadium carbide nanodots via N and P co-doped carbon nanosheets wrapping[J]. Chemical Engineering Journal,2020,393:123596. doi: 10.1016/j.cej.2019.123596
    [109] Sun Q L, Dai Y, Ma Y D, et al. Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries[J]. Journal of Physical Chemistry Letters,2016,7(6):937-943. doi: 10.1021/acs.jpclett.6b00171
    [110] Xiao Y, Zheng L R, Cao M H. Hybridization and pore engineering for achieving high-performance lithium storage of carbide as anode material[J]. Nano Energy,2015,12:152-160. doi: 10.1016/j.nanoen.2014.12.015
    [111] Gao Q, Zhao X, Xiao Y, et al. A mild route to mesoporous Mo2C-C hybrid nanospheres for high performance lithium-ion batteries[J]. Nanoscale,2014,6(11):6151-6157. doi: 10.1039/c3nr06678a
    [112] Deng M D, Qi J, Li X, et al. MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries[J]. Electrochimica Acta,2018,277:205-210. doi: 10.1016/j.electacta.2018.04.185
    [113] Wang B, Wang G, Wang H. Hybrids of Mo2C nanoparticles anchored on graphene sheets as anode materials for high performance lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(33):17403-17411. doi: 10.1039/C5TA03929K
    [114] Lee G H, Moon S H, Kim M C, et al. Molybdenum carbide embedded in carbon nanofiber as a 3D flexible anode with superior stability and high-rate performance for Li-ion batteries[J]. Ceramics International,2018,44(7):7972-7977. doi: 10.1016/j.ceramint.2018.01.237
    [115] Chen M H, Zhang J W, Chen Q G, et al. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries[J]. Materials Research Bulletin,2016,73:459-464. doi: 10.1016/j.materresbull.2015.09.030
    [116] Chen J, Huang Y, Zhao F, et al. A hierarchical α-MoC1−x hybrid nanostructure for lithium-ion storage[J]. Journal of Materials Chemistry A,2017,5(17):8125-8132. doi: 10.1039/C7TA01256J
    [117] Zhang M, Huang X X, Xin H L, et al. Coaxial electrospinning synthesis hollow Mo2C@C core-shell nanofibers for high-performance and long-term lithium-ion batteries[J]. Applied Surface Science,2019,473:352-358. doi: 10.1016/j.apsusc.2018.12.098
    [118] Cuan J, Zhang F, Zheng Y, et al. Heterocarbides reinforced electrochemical energy storage[J]. Small,2019,15(44):1903652. doi: 10.1002/smll.201903652
    [119] Yang Z, Wang H, Cheng B, et al. Micronano porous Mo2C@ C nanorods composites as robust anodes for Li-ion battery[J]. Energy Technology,2020,8:2000189. doi: 10.1002/ente.202000189
    [120] Peng Q, Hu K, Sa B, et al. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications[J]. Nano Research,2017,10(9):3136-3150. doi: 10.1007/s12274-017-1531-5
    [121] Yu T, Zhang S, Li F, et al. Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery[J]. Journal of Materials Chemistry A,2017,5(35):18698-18706. doi: 10.1039/C7TA04390B
    [122] Zhang B, Zhang W, Meng Q, et al. VC2 and V1/2Mn1/2C2 nanosheets with robust mechanical and thermal properties as promising materials for Li-ion batteries[J]. Physical Chemistry Chemical Physics,2019,21(3):1606-1613. doi: 10.1039/C8CP06487C
    [123] Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research,2013,46(5):1135-1143. doi: 10.1021/ar3001348
    [124] Cui Z Q, Yao J, Mei T, et al. Strong lithium polysulfides chemical trapping of TiC-TiO2/S composite for long-cycle lithium-sulfur batteries[J]. Electrochimica Acta,2019,298:43-51. doi: 10.1016/j.electacta.2018.12.075
    [125] Choi J, Jeong T G, Cho B W, et al. Tungsten carbide as a highly efficient catalyst for polysulfide fragmentations in Li-S batteries[J]. Journal of Physical Chemistry C,2018,122(14):7664-7669. doi: 10.1021/acs.jpcc.8b02096
    [126] Wu Y L, Zhu X R, Li P R, et al. Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries[J]. Nano Energy,2019,59:636-643. doi: 10.1016/j.nanoen.2019.03.015
    [127] Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters,2018,18(2):1035-1043. doi: 10.1021/acs.nanolett.7b04505
    [128] Shi H, Sun Z, Lv W, et al. Necklace-like MoC sulfiphilic sites embedded in interconnected carbon networks for Li-S batteries with high sulfur loading[J]. Journal of Materials Chemistry A,2019,7(18):11298-11304. doi: 10.1039/C9TA00741E
    [129] Liu Y S, Bai Y L, Liu X, et al. Free-standing hybrid porous membranes integrated with transition metal nitride and carbide nanoparticles for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal,2019,378:122208. doi: 10.1016/j.cej.2019.122208
    [130] Zhou T H, Zhao Y, Zhou G M, et al. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement[J]. Nano Energy,2017,39:291-296. doi: 10.1016/j.nanoen.2017.07.012
    [131] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries[J]. Journal of the American Chemical Society,2006,128(4):1390-1393. doi: 10.1021/ja056811q
    [132] Xu J, Ma J, Fan Q, et al. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries[J]. Advanced Materials,2017,29(28):1606454. doi: 10.1002/adma.201606454
    [133] Thotiyl M M O, Freunberger S A, Peng Z, et al. A stable cathode for the aprotic Li-O2 battery[J]. Nature materials,2013,12(11):1050-1056. doi: 10.1038/nmat3737
    [134] Qiu F, He P, Jiang J, et al. Ordered mesoporous TiC-C composites as cathode materials for Li-O2 batteries[J]. Chemical Communications,2016,52(13):2713-2716. doi: 10.1039/C5CC09034B
    [135] Zhu J, Wang F, Wang B, et al. Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery[J]. Journal of the American Chemical Society,2015,137(42):13572-13579. doi: 10.1021/jacs.5b07792
    [136] Yang Y, Qin Y, Xue X, et al. Intrinsic properties affecting the catalytic activity of 3d transition-metal carbides in Li-O2 battery[J]. Journal of Physical Chemistry C,2018,122(31):17812-17819. doi: 10.1021/acs.jpcc.8b04285
    [137] Tereshchuk P, Golodnitsky D, Natan A. Trends in the adsorption of oxygen and Li2O2 on transition-metal carbide surfaces: A theoretical study[J]. Journal of Physical Chemistry C,2020,124(14):7716-7724. doi: 10.1021/acs.jpcc.9b10863
    [138] Kundu D, Black R, Adams B, et al. Nanostructured metal carbides for aprotic Li-O2 batteries: new insights into interfacial reactions and cathode stability[J]. Journal of Physical Chemistry Letters,2015,6(12):2252-2258. doi: 10.1021/acs.jpclett.5b00721
    [139] Lu Y, Ang H, Yan Q, et al. Bioinspired synthesis of hierarchically porous MoO2/Mo2C nanocrystal decorated N-doped carbon foam for lithium-oxygen batteries[J]. Chemistry of Materials,2016,28(16):5743-5752. doi: 10.1021/acs.chemmater.6b01966
    [140] Oh Y J, Kim J H, Lee J Y, et al. Design of house centipede-like MoC-Mo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance Li-O2 batteries[J]. Chemical Engineering Journal,2020,384:123344. doi: 10.1016/j.cej.2019.123344
    [141] Kwak W J, Lau K C, Shin C D, et al. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life[J]. ACS Nano,2015,9(4):4129-4137. doi: 10.1021/acsnano.5b00267
    [142] Yu H, Dinh K N, Sun Y, et al. Performance-improved Li-O2 batteries by tailoring the phases of MoxC porous nanorods as an efficient cathode[J]. Nanoscale,2018,10(31):14877-14884. doi: 10.1039/C8NR04319A
    [143] Xing Y, Yang Y, Chen R, et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high‐performance aprotic Li-O2 battery[J]. Small,2018,14(19):1704366. doi: 10.1002/smll.201704366
    [144] Oh Y J, Kim J H, Park S K, et al. Highly efficient hierarchical multiroom-structured molybdenum carbide/carbon composite microspheres grafted with nickel-nanoparticle-embedded nitrogen-doped carbon nanotubes as air electrode for lithium-oxygen batteries[J]. Chemical Engineering Journal,2018,351:886-896. doi: 10.1016/j.cej.2018.06.166
    [145] Wu C, Hou Y, Jiang J, et al. Heterostructured Mo2C-MoO2 as highly efficient catalyst for rechargeable Li-O2 battery[J]. Journal of Power Source,2020,470:228317. doi: 10.1016/j.jpowsour.2020.228317
    [146] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature,2001,414(6861):332-337. doi: 10.1038/35104599
    [147] Turner J, Sverdrup G, Mann M K, et al. Renewable hydrogen production[J]. International Journal of Energy Research,2008,32(5):379-407. doi: 10.1002/er.1372
    [148] Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science,1973,181(4099):547-549. doi: 10.1126/science.181.4099.547
    [149] Hunt S T, Kokumai T M, Zanchet D, et al. Alloying tungsten carbide nanoparticles with tantalum: Impact on electrochemical oxidation resistance and hydrogen evolution activity[J]. Journal of Physical Chemistry C,2015,119(24):13691-13699. doi: 10.1021/acs.jpcc.5b02922
    [150] Xu S H, Chu S Y, Yang L, et al. Tungsten nitride/carbide nanocomposite encapsulated in nitrogen-doped carbon shell as an effective and durable catalyst for hydrogen evolution reaction[J]. New Journal of Chemistry,2018,42(24):19557-19563. doi: 10.1039/C8NJ04663H
    [151] Guo L, Ji L, Wang J, et al. Walnut-like Transition metal carbides with three-dimensional networks by a versatile electropolymerization-assisted method for efficient hydrogen evolution[J]. ACS Applied Materials & Interfaces,2018,10(43):36824-36833.
    [152] Ma Y Y, Lang Z L, Yan L K, et al. Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst[J]. Energy & Environmental Science,2018,11(8):2114-2123.
    [153] Jin H Y, Chen J Y, Mao S J, et al. Transition metal induced the contraction of tungsten carbide lattice as superior hydrogen evolution reaction catalyst[J]. ACS Applied Materials & Interfaces,2018,10(26):22094-22101.
    [154] Jain A, Ramasubramaniam A. Tuning core-shell interactions in tungsten carbide-Pt nanoparticles for the hydrogen evolution reaction[J]. Physical Chemistry Chemical Physics,2018,20(36):23262-23271. doi: 10.1039/C8CP04113J
    [155] Esposito D V, Hunt S T, Kimmel Y C, et al. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides[J]. Journal of the American Chemical Society,2012,134(6):3025-3033. doi: 10.1021/ja208656v
    [156] Ma Y, Guan G, Hao X, et al. Molybdenum carbide as alternative catalyst for hydrogen production-A review[J]. Renewable and Sustainable Energy Reviews,2017,75:1101-1129. doi: 10.1016/j.rser.2016.11.092
    [157] Bae S Y, Jeon I Y, Mahmood J, et al. Molybdenum-based carbon hybrid materials to enhance the hydrogen evolution reaction[J]. Chemistry-A European Journal,2018,24(69):18158-18179. doi: 10.1002/chem.201804140
    [158] Cui T T, Dong J H, Pan X L, et al. Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes[J]. Journal of Energy Chemistry,2019,28:123-127. doi: 10.1016/j.jechem.2018.03.006
    [159] Chen Y Y, Zhang Y, Ma Y L, et al. Facile synthesis of Mo2C nanocrystals embedded in nanoporous carbon network for efficient hydrogen evolution[J]. Chinese Journal of Chemistry,2017,35(6):911-917. doi: 10.1002/cjoc.201600790
    [160] García G, Roca-Ayats M, Guillén-Villafuerte O, et al. Electrochemical performance of α-Mo2C as catalyst for the hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry,2017,793:235-241. doi: 10.1016/j.jelechem.2017.01.038
    [161] Wan C, Leonard B M. Iron-doped molybdenum carbide catalyst with high activity and stability for the hydrogen evolution reaction[J]. Chemistry of Materials,2015,27(12):4281-4288. doi: 10.1021/acs.chemmater.5b00621
    [162] Xiong K, Li L, Zhang L, et al. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. Journal of Materials Chemistry A,2015,3(5):1863-1867. doi: 10.1039/C4TA05686H
    [163] Lin H L, Liu N, Shi Z P, et al. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Advanced Functional Materials,2016,26(31):5590-5598. doi: 10.1002/adfm.201600915
    [164] Gomez-Marin A M, Ticianelli E A. Effect of transition metals in the hydrogen evolution electrocatalytic activity of molybdenum carbide[J]. Applied Catalysis B: Environmental,2017,209:600-610. doi: 10.1016/j.apcatb.2017.03.044
    [165] Zang X, Chen W, Zou X, et al. Self‐assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis[J]. Advanced Materials,2018,30(50):1805188. doi: 10.1002/adma.201805188
    [166] Li S W, Yang C, Yin Z, et al. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10(4):1322-1328. doi: 10.1007/s12274-017-1425-6
    [167] Wang Z L, Hao X F, Jiang Z, et al. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society,2015,137(48):15070-15073. doi: 10.1021/jacs.5b09021
    [168] Li S W, Ren P J, Yang C, et al. Fe5C2 nanoparticles as low-cost HER electrocatalyst: The importance of Co substitution[J]. Science Bulletin,2018,63(20):1358-1363. doi: 10.1016/j.scib.2018.09.016
    [169] Kou Z K, Xi K, Pu Z H, et al. Constructing carbon-cohered high-index (222) faceted tantalum carbide nanocrystals as a robust hydrogen evolution catalyst[J]. Nano Energy,2017,36:374-380. doi: 10.1016/j.nanoen.2017.04.057
    [170] Pei W, Zhou S, Bai Y Z, et al. N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: Understanding the synergistic effect from atomistic level[J]. Carbon,2018,133:260-266. doi: 10.1016/j.carbon.2018.03.043
    [171] Wan J, Wang C C, Tang Q, et al. First-principles study of vanadium carbides as electrocatalysts for hydrogen and oxygen evolution reactions[J]. RSC Advances,2019,9(64):37467-37473. doi: 10.1039/C9RA06539C
    [172] Wygant B R, Kawashima K, Mullins C B. Catalyst or precatalyst? The effect of oxidation on transition metal carbide, pnictide, and chalcogenide oxygen evolution catalysts[J]. ACS Energy Letters,2018,3(12):2956-2966. doi: 10.1021/acsenergylett.8b01774
    [173] Regmi Y N, Wan C, Duffee K D, et al. Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst[J]. ChemCatChem,2015,7(23):3911-3915. doi: 10.1002/cctc.201500677
    [174] Wang S, Bendt G, Saddeler S, et al. Synergistic effects of Mo2C‐NC@ CoxFey core-shell nanoparticles in electrocatalytic overall water splitting reaction[J]. Energy Technology,2019,7(6):1801121. doi: 10.1002/ente.201801121
    [175] Najafi L, Bellani S, Oropesa-Nunez R, et al. Carbon nanotube-supported MoSe2 holey flake: Mo2C ball hybrids for bifunctional pH-universal water splitting[J]. ACS Nano,2019,13(3):3162-3176. doi: 10.1021/acsnano.8b08670
    [176] Zhang S G, Gao G H, Hao J C, et al. Low-electronegativity vanadium substitution in cobalt carbide induced enhanced electron transfer for efficient overall water splitting[J]. ACS Applied Materials & Interfaces,2019,11(46):43261-43269.
    [177] Karimi F, Peppley B A. Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis[J]. Electrochimica Acta,2017,246:654-670. doi: 10.1016/j.electacta.2017.06.048
    [178] Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science,2007,315(5811):493-497. doi: 10.1126/science.1135941
    [179] Greeley J, Stephens I E, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nature Chemistry,2009,1(7):552-556. doi: 10.1038/nchem.367
    [180] Zhang J, Chen J W, Jiang Y W, et al. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction[J]. Applied Surface Science,2016,389( 15):157-164.
    [181] Gómez‐Marín A M, Bott‐Neto J L, Souza Jr J B, et al. Electrocatalytic activity of different phases of molybdenum carbide/carbon and platinum-molybdenum carbide/carbon composites toward the oxygen reduction reaction[J]. ChemElectroChem,2016,3(10):1570-1579. doi: 10.1002/celc.201600376
    [182] Gautam J, Thanh T D, Maiti K, et al. Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction[J]. Carbon,2018,137:358-367. doi: 10.1016/j.carbon.2018.05.042
    [183] Cui X, Meng L, Zhang X, et al. Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta,2018,295:384-392.
    [184] Zheng W, Wang L, Deng F, et al. Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells[J]. Nature Communications,2017,8(1):418. doi: 10.1038/s41467-017-00507-6
    [185] Calvillo L, Valero-Vidal C, Agnoli S, et al. Combined photoemission spectroscopy and electrochemical study of a mixture of (oxy)carbides as potential innovative supports and electrocatalysts[J]. ACS Applied Materials & Interfaces,2016,8(30):19418-19427.
    [186] Xu W, Ramírez P J, Stacchiola D, et al. The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation[J]. Catalysis Letters,2015,145(7):1365-1373. doi: 10.1007/s10562-015-1540-5
    [187] Posada-Perez S, Vines F, Rodriguez J A, et al. Fundamentals of methanol synthesis on metal carbide based catalysts: activation of CO2 and H2[J]. Topics in Catalysis,2015,58(2-3):159-173. doi: 10.1007/s11244-014-0355-8
    [188] Back S, Jung Y. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4[J]. ACS Energy Letters,2017,2(5):969-975. doi: 10.1021/acsenergylett.7b00152
    [189] Zhong Y, Xia X H, Shi F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced Science,2016,3(5):1500286.
    [190] Chen G, Wang T, Liu P, et al. Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers[J]. Energy & Environmental Science,2020,13(9):2849-2855.
    [191] Yao S, Zhang X, Zhou W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science,2017,357(6349):389-393. doi: 10.1126/science.aah4321
    [192] Zhang X, Zhang M, Deng Y, et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC[J]. Nature,2021,589(7842):396-401. doi: 10.1038/s41586-020-03130-6
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  124
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-10
  • 修回日期:  2021-05-31
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回