留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“Egg-box”-assisted preparation of hierarchical porous carbon with excellent electrochemical property

LI Shi-jie ZHANG Ming-yang GAO Yan LI Hui WANG Qian ZHANG Linhua

LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Linhua. “Egg-box”-assisted preparation of hierarchical porous carbon with excellent electrochemical property[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60068-9
Citation: LI Shi-jie, ZHANG Ming-yang, GAO Yan, LI Hui, WANG Qian, ZHANG Linhua. “Egg-box”-assisted preparation of hierarchical porous carbon with excellent electrochemical property[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60068-9

doi: 10.1016/S1872-5805(21)60068-9

“Egg-box”-assisted preparation of hierarchical porous carbon with excellent electrochemical property

Funds: The authors are grateful to the Shandong University for providing equipment support. This study was supported by the Doctoral Fund of Shandong Jianzhu University (XNBS1838)
More Information
    Corresponding author: LI Shi-jie, Male, Doctor, Lectureship, Tel: +86 0531 86361236; E-mail: 675767978@163.com
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  N2 adsorption-desorption isotherms of AC and EAC

    Figure  2.  Pore size distributions of AC and EAC

    Figure  3.  "Egg-box" structural macromolecular fragments formed by G unit and Ca2+

    Figure  4.  Principle of pore formation by removing Ca2+ from carbonized products

    Figure  5.  SEM of carbonized products of EP before and after HCl pickling

    Figure  6.  SEM and TEM images of EAC

    Figure  7.  EDS analysis of carbonization products before and after pickling

    Figure  8.  XRD patterns of AC and EAC

    Figure  9.  FT-IR spectra of the AC and EAC

    Figure  10.  GCD curves of AC and EAC at the different current densities

    Figure  11.  CV curves of EAC and AC

    Figure  12.  Rate performance of AC and EAC

    Figure  13.  Cycle performance of AC and EAC at the current density of 5 A g−1

    Figure  14.  Nyquist impedance plots of AC- and EAC-based supercapacitors

    Table  1.   Ultimate analysis and proximate analysis of the EP

    Ultimate analyses (ad)Proximate analyses (ad)
    SampleCHONSCaMgMAFCV
    EP38.64.933.51.90.63.21.34.916.315.063.8
    Where M is the moisture, A is the ash, FC is the fixed carbon, V is the volatile.
    下载: 导出CSV

    Table  2.   Characteristics of pores in AC and EAC

    SampleSBET
    (m2 g−1)
    SMic
    (m2 g−1)
    SMes
    (m2 g−1)
    SMes/SMicVTot
    (cm3 g−1)
    VMic
    (cm3 g−1)
    DMic
    (nm)
    DMes
    (nm)
    EAC3283110521781.973.861.530.754.62
    AC217518593160.172.131.250.623.10
    Note: SMic represents micropore specific surface area, SMes represents mesopore specific surface area, VTot represents pore volume, VMic represents micropore volume, DMic represents micropore average pore diameter, DMes represents mesopore average pore diameter.
    下载: 导出CSV

    Table  3.   Gravimetric capacitance of AC and EAC at different current densities

    SampleCapacitance (F g−1)
    0.1 A g−10.2 A g−10.5 A g−11 A g−12 A g−15 A g−110 A g−1
    AC253233220213208205202
    EAC361350338330327325323
    下载: 导出CSV
  • [1] L. Mao, Y. Li, C.Y. Chi, H.S.O. Chan, J.S. Wu. Conjugated polyfluorene imidazolium ionic liquids intercalated reduced graphene oxide for high performance supercapacitor electrodes[J]. Nano Energy,2014,6:119-128. doi: 10.1016/j.nanoen.2014.03.018
    [2] G.M. Wang, H.Y. Wang, X.H. Lu, Y.C. Ling, M.H. Yu, T. Zhai, Y.X. Tong, Y. Li. Solid-State supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Adv. Mater.,2014,26:2676-2682. doi: 10.1002/adma.201304756
    [3] A.S. Westover, J.W. Tian, S. Bernath, L. Oakes, R. Edwards, F.N. Shabab, S. Chatterjee, A.V. Anilkumar, C.L. Pint. A multifunctional load-bearing solid-state supercapacitor[J]. Nano Lett.,2014,14:3197-3202. doi: 10.1021/nl500531r
    [4] X.X. Bai, X.J. Hu, S.Y. Zhou, J. Yan, C.H. Sun, P. Chen, L.F. Li. In situ polymerization and characterization of grafted poly (3, 4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite with high electrochemical performances[J]. Electrochimica Acta,2013,87:394-400. doi: 10.1016/j.electacta.2012.09.079
    [5] H. Chen, Y.C. Guo, F. Wang, G. Wang, P.R. Qi, X.H. Guo, B. Dai, F. Yu. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. New Carbon Mater.,2017,32:592-599. doi: 10.1016/S1872-5805(17)60140-9
    [6] K.S. Lee, M.S. Park, J.D. Kim. Nitrogen doped activated carbon with nickel oxide for high specific capacitance as supercapacitor electrodes[J]. Colloids Surf., A,2017,533:323-329. doi: 10.1016/j.colsurfa.2017.09.008
    [7] H. Jin, X.M. Wang, Z.R. Gu, Q.H. Fan, B. Luo. A facile method for preparing nitrogen-doped graphene and its application in supercapacitors[J]. J. Power Sources,2015,273:1156-1162. doi: 10.1016/j.jpowsour.2014.10.010
    [8] R. Sharma, C. Manzie, M. Bessede, M.J. Brear, R.H. Crawford. Conventional, hybrid and electric vehicles for Australian driving conditions -Part 1: Technical and financial analysis[J]. Transport. Res. C,2012,25:238-249. doi: 10.1016/j.trc.2012.06.003
    [9] K. Sun, C.Y. Leng, J. Jian-Chun, Q. Bu, G.F. Lin, X.C. Lu, G.Z. Zhu. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Mater.,2017,32:451-459. doi: 10.1016/S1872-5805(17)60134-3
    [10] A. Volperts, G. Dobele, A. Zhurinsh, D. Vervikishko, E. Shkolnikov, J. Ozolinsh. Wood based activated carbons for supercapacitor electrodes with sulfuric acid electrolyte[J]. New Carbon Mater.,2017,32:319-326. doi: 10.1016/S1872-5805(17)60125-2
    [11] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors[J]. Nat. Mater.,2008,7:845-854. doi: 10.1038/nmat2297
    [12] Y. Tao, X.Y. Xie, W. Lv, D.M. Tang, D.B. Kong, Z.H. Huang, H. Nishihara, T. Ishii, B.H. Li, D. Golberg. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Sci. Rep.,2013,3:2975. doi: 10.1038/srep02975
    [13] F. Barzegar, A. Bello, J.K. Dangbegnon, N. Manyala, X.H. Xia. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Appl. Energy,2017,207:417-426. doi: 10.1016/j.apenergy.2017.05.110
    [14] M. Fujishige, I. Yoshida, Y. Toya, Y. Banba, K. I. Oshida, Y. S. Tanaka, P. Dulyasereed, W. Wongwiriyapand, K. Takeuchi. Preparation of activated carbon from bamboo-cellulose fiber and its use for EDLC electrode material[J]. J. Environ. Chem. Eng.,2017,5:1801-1808. doi: 10.1016/j.jece.2017.03.011
    [15] H.J. Liu, W.J. Cui, L.H. Jin, C.X. Wang, Y.Y. Xia. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors[J]. J. Mater. Chem.,2009,19:3661-3667. doi: 10.1039/b819820a
    [16] Y. Xiao, C. Long, M.T. Zheng, H.W. Dong, B.F. Lei, H.R. Zhang, Y.L. Liu. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors[J]. Chin. Chem. Lett.,2014,25:865-868. doi: 10.1016/j.cclet.2014.05.004
    [17] P. Kleszyk, P. Ratajczak, P. Skowron, J. Jagiello, Q. Abbas, E. Frackowiak, F. Beguin. Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J]. Carbon,2015,81:148-157. doi: 10.1016/j.carbon.2014.09.043
    [18] A.M. Abioye, F.N. Ani. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renew. Sust. Energ. Rev.,2015,52:1282-1293. doi: 10.1016/j.rser.2015.07.129
    [19] R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A. Hashmi. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors[J]. Bioresour. Technol.,2013,132:254-261. doi: 10.1016/j.biortech.2013.01.044
    [20] G.M. Wang, Y.C. Ling, F. Qian, X.Y. Yang, X.X. Liu, Y. Li. Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes[J]. J. Power Sources,2011,196:5209-5214. doi: 10.1016/j.jpowsour.2011.02.019
    [21] D.M. Kang, Q.L. Liu, J.J. Gu, Y.S. Su, W. Zhang, D. Zhang. “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9:11225-11233. doi: 10.1021/acsnano.5b04821
    [22] K Jurewicz, K Babel. Efficient capacitor materials from active carbons based on coconut Shell/Melamine precursors[J]. Energy Fuels,2010,24:3429-3435. doi: 10.1021/ef901554j
    [23] M.S. Balathanigaimani, W.G. Shim, M.J. Lee, C. Kim, J.W. Lee, H. Moon. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors[J]. Electrochem. Commun.,2008,10:868-871. doi: 10.1016/j.elecom.2008.04.003
    [24] X.L. Li, C.L. Han, X.Y. Chen, C.W. Shi. Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes[J]. Microporous Mesoporous Mater.,2010,131:303-309. doi: 10.1016/j.micromeso.2010.01.007
    [25] S. Zhao, C.Y. Wang, M.M. Chen, J. Wang, Z.Q. Shi. Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. J. Phys. Chem. Solids,2009,70:1256-1260. doi: 10.1016/j.jpcs.2009.07.004
    [26] H.B. Chen, H.B. Wang, L.F. Yang, Y. Xiao, M.T. Zheng, Y.L. Liu, H.G. Fu. High specific surface area rice hull based porous carbon prepared for EDLCs[J]. Int. J. Electrochem. Sci.,2012,7:4889-4897.
    [27] X.A. Li, W. Xing, S.P. Zhuo, J. Zhou, F. Li, S.Z. Qiao, G.Q. Lu. Preparation of capacitor’s electrode from sunflower seed shell[J]. Bioresour. Technol.,2011,102:1118-1123. doi: 10.1016/j.biortech.2010.08.110
    [28] J.J. He, D.Y. Zhang, Y.L. Wang, J.W. Zhang, B.B. Yang, H. Shi, K.J. Wang, Y. Wang. Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability[J]. Appl. Surf. Sci.,2020,515
    [29] Y.C. Qiu, X.F. Zhang, S.H. Yang. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J]. Phys. Chem. Chem. Phys.,2011,13:12554-12558. doi: 10.1039/c1cp21148j
    [30] M. Nolan, R. Long, N.J. English, D.A. Mooney. Hybrid density functional theory description of N- and C-doping of NiO[J]. J. Chem. Phys.,2011,134:735.
    [31] A. Sarhan, H. Nakanishi, W.A. Dino, H. Kishi, H. Kasai. Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system[J]. Surf. Sci.,2012,606:239-246. doi: 10.1016/j.susc.2011.09.022
    [32] D.W. Wang, F. Li, H.T. Fang, M. Liu, G.Q. Lu, H.M. Cheng. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport[J]. J. Phys. Chem. B,2006,110:8570-8575. doi: 10.1021/jp0572683
    [33] S.J. Li, K.H. Han, P.C. Si, J.X. Li, C.M. Lu. High-performance activated carbons prepared by KOH activation of gulfweed for supercapacitors[J]. Int. J. Electrochem. Sci.,2018,13:1728-1743.
    [34] D.V. Cuong, P.C. Wu, N.L. Liu, C.H. Hou. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions[J]. Sep. Purif. Technol.,2020,242
    [35] H.J. Zheng, A.M. Yu, C.A. Ma. Effect of pore characteristics on electrochemical capacitance of activated carbons[J]. Russ. J. Electrochem.,2012,48:1179-1186. doi: 10.1134/S102319351205014X
    [36] A.Y. Rychagov, N.A. Urisson, Y.M. Vol'Fkovich. Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor[J]. Russ. J. Electrochem.,2001,37:1172-1179. doi: 10.1023/A:1012715615873
    [37] W.C. Chen, T.C. Wen, H. Teng. Polyaniline-deposited porous carbon electrode for supercapacitor[J]. Electrochim. Acta,2003,48:641-649. doi: 10.1016/S0013-4686(02)00734-X
    [38] Q.H. Huang, X.Y. Wang, J. Li, C.L. Dai, S. Gamboa, P.J. Sebastian. Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors[J]. J. Power Sources,2007,164:425-429. doi: 10.1016/j.jpowsour.2006.09.066
    [39] I.H. Kim, J.H. Kim, B.W. Cho, K.B. Kim. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications[J]. J. Electrochem. Soc.,2006,153:1451-1458. doi: 10.1149/1.2203936
    [40] B. Fang, Y.Z. Wei, M. Kumagai. Modified carbon materials for high-rate EDLCs application[J]. J. Power Sources,2006,155:487-491. doi: 10.1016/j.jpowsour.2005.04.012
    [41] C.H. Kim, S.I. Pyun, H.C. Shin. Kinetics of double-layer charging/discharging of activated carbon electrodes: Role of surface acidic functional groups[J]. J. Electrochem. Soc.,2002,149:93-98.
    [42] W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C. Ruangviriyachai. Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties[J]. Chem. Eng. Res. Des.,2011,89:335-340. doi: 10.1016/j.cherd.2010.06.012
    [43] K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem. Eng. J.,2016,286:476-484. doi: 10.1016/j.cej.2015.10.099
    [44] V. Gomez-Serrano, J. Pastor-Villegas, A. Perez-Florindo A, C. Duran-Valle, C.Valenzuela-Calahorro. FT-IR study of rockrose and char and activated carbon[J]. J. Anal. Appl. Pyrolysis,1996,36:71-80. doi: 10.1016/0165-2370(95)00921-3
    [45] A.N.A. EI-Hendawy. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions[J]. J. Anal. Appl. Pyrolysis,2006,75:159-166. doi: 10.1016/j.jaap.2005.05.004
    [46] X.C. Dong, X.W. Wang, L. Wang, H. Song, X.G. Li, L.H. Wang, M.B. Chan-Park, C.M. Li, P. Chen. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon,2012,50:4865-4870. doi: 10.1016/j.carbon.2012.06.014
    [47] H. Zhou, B.L. Lv, Y. Xu, D. Wu. Synthesis and electrochemical properties of NiO nanospindles[J]. Mater. Res. Bull.,2014,50:399-404. doi: 10.1016/j.materresbull.2013.11.004
    [48] S.M. Pawar, A.I. Inamdar, K.V. Gurav, Y. Jo, H. Kim, J.H. Kim, H. Im. Effect of oxidant on the structural, morphological and supercapacitive properties of nickel hydroxide nanoflakes electrode films[J]. Mater. Lett.,2015,141:336-339. doi: 10.1016/j.matlet.2014.11.133
    [49] H.Y. Sun, S.W. Liu, Q.F. Lu, H.Y. Zhong. Template-synthesis of hierarchical Ni(OH)2 hollow spheres with excellent performance as supercapacitor[J]. Mater. Lett.,2014,128:136-139. doi: 10.1016/j.matlet.2014.04.134
    [50] D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun. CORRIGENDUM: Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J]. Sci. Rep.,2014,4:5294. doi: 10.1038/srep05294
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  21
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 修回日期:  2020-01-01
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回