留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture

WANG Jing CHEN Shuang XU Jia-yu LIU Li-cheng ZHOU Ji-cheng CAI Jin-jun

王静, 陈双, 徐嘉宇, 刘立成, 周继承, 蔡进军. 壳聚糖水热炭低浓度KOH活化制备多孔炭材料及其CO2吸附性能[J]. 新型炭材料, 2021, 36(6): 1081-1093. doi: 10.1016/S1872-5805(21)60074-4
引用本文: 王静, 陈双, 徐嘉宇, 刘立成, 周继承, 蔡进军. 壳聚糖水热炭低浓度KOH活化制备多孔炭材料及其CO2吸附性能[J]. 新型炭材料, 2021, 36(6): 1081-1093. doi: 10.1016/S1872-5805(21)60074-4
WANG Jing, CHEN Shuang, XU Jia-yu, LIU Li-cheng, ZHOU Ji-cheng, CAI Jin-jun. High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture[J]. NEW CARBON MATERIALS, 2021, 36(6): 1081-1093. doi: 10.1016/S1872-5805(21)60074-4
Citation: WANG Jing, CHEN Shuang, XU Jia-yu, LIU Li-cheng, ZHOU Ji-cheng, CAI Jin-jun. High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture[J]. NEW CARBON MATERIALS, 2021, 36(6): 1081-1093. doi: 10.1016/S1872-5805(21)60074-4

壳聚糖水热炭低浓度KOH活化制备多孔炭材料及其CO2吸附性能

doi: 10.1016/S1872-5805(21)60074-4
基金项目: 国家自然科学基金(21506184;21676227);湖南省自然科学基金(2021JJ30665, 2019JJ1863);中科院生物基材料重点实验室基金(BMF-2020-15);“环境友好与资源高效利用化工新技术”湖南省2011协同创新中心资助项目
详细信息
    通讯作者:

    周继承,博士,教授. E-mail:zhoujicheng@sohu.com

    蔡进军,博士,副教授. E-mail:caijj@xtu.edu.cn

  • 中图分类号: X712

High-surface-area porous carbons produced by the mild KOH activation of a chitosan hydrochar and their CO2 capture

More Information
  • 摘要: 水热炭化是一种类似煤矿化过程将生物质低能耗转化为炭材料的方法,但这种方法得到的水热炭比表面积较低,限制了其直接作为吸附剂在CO2捕集方面的应用。本文以壳聚糖为前体通过水热炭化联合低浓度KOH活化,制备出高比表面积氮掺杂多孔炭材料,采用氮气物理吸附仪、扫描电镜(SEM)和X-射线衍射仪(XRD)研究水热炭化过程中熔融盐和活化温度对多孔炭材料孔结构及其CO2吸附性能的影响。结果表明升高活化温度能够有效增加孔隙率。水热过程中存在的熔融盐在600和700 °C活化时会引起比表面积适度降低,这是由于存在的盐可能在水热炭中引入部分介孔结构。低温活化时水热反应中盐的存在可以增加多孔炭材料CO2吸附量。例如700 °C活化水热炭化过程中不含盐样品AC-0-700和含盐样品AC-5-700在常温常压下的CO2吸附量分别为2.97和3.45 mmol/g,这一结论证实比表面积并非影响常压下多孔炭材料中CO2吸附量的唯一因素。水热反应中盐的存在能够有效固定水热炭中的氮元素减少其活化时的挥发程度。另外,虽然600 °C活化样品AC-5-600的比表面积仅为1249 m2/g,但其常温常压下的CO2吸附量高达4.41 mmol/g,主要归因于高微孔率和适度氮掺杂的联合效应。
  • FIG. 1075.  FIG. 1075.

    FIG. 1075.. 

    Figure  1.  TGA curves for chitosan hydrochar obtained with salt-assisted hydrothermal treatment under N2 atmosphere.

    Figure  2.  XRD patterns: (a) chitosan and hydrochar, and (b) porous carbons after activation.

    Figure  3.  Typical SEM images for different samples: (a) hydrochar (0), (b) AC-0-600, (c) AC-5-600, (d) AC-0-800 and (e, f) TEM images for AC-0-800.

    Figure  4.  Representative FT-IR spectra for chitosan materials, hydrochar and AC-5-800.

    Figure  5.  XPS analysis: (a) Survey curves, (b) C1s and (c) O1s XPS spectra for AC-0-600 and N1s XPS spectra for (d) AC-0-600, (e) AC-5-600 and (f) AC-0-800.

    Figure  6.  Nitrogen adsorption-desorption isotherms for chitosan-derived carbons and corresponding pore size distributions determined by DFT model.

    Figure  7.  The CO2 capture performance at (a) 0 °C and (b) 25 °C for chitosan-derived carbons.

    Figure  8.  Isosteric heat (Qst) of CO2 on the surface of carbons.

    Table  1.   Elemental contents of carbons determined by XPS analysis with the ratios of different N-species on the surface of carbons.

    SamplesChemical composition (at.%)Ratio in total N-species (%)
    CONGraphitic-NPyrrolic-NPyridinic-N
    AC-0-60073.0820.196.735.474.719.9
    AC-0-80090.297.282.4314.767.118.2
    AC-5-60077.9314.527.558.676.814.6
    下载: 导出CSV

    Table  2.   Porous structure parameters and CO2 uptakes for the carbons from chitosan hydrochar.

    SamplesSBET (m2/g)Smicro (m2/g)Vt (cm3/g)Vmicro (cm3/g)CO2 uptake (mmol/g)
    0 °C25 °C
    AC-0-600135811420.740.563.031.78
    AC-0-700214916171.140.805.812.97
    AC-0-80020956321.150.368.274.22
    AC-5-600124910510.670.516.924.41
    AC-5-700194414621.050.737.133.45
    AC-5-80025476821.390.376.122.69
    下载: 导出CSV

    Table  3.   CO2 uptakes (mmol/g) on various types of biomass-derived carbons at 25 °C and 0.1 MPa.

    AdsorbentsPrecursorsActivation conditionsUptake (mmol/g)References
    AC-5-600Chitosan hydrocharKOH (1∶1, 600 °C)4.41This work
    NAC-450-2.5Walnut shellNaNH2 (1∶2.5, 450 °C)3.06[1]
    NCS-650-2GlucoseKOH (1∶2, 650 °C)4.37[6]
    CPC-600PigskinCaCO3 (600 °C)4.40[9]
    AHTC-240Camphor leavesKOH (1∶3, 800 °C)0.80[21]
    SC-650-2StrawberriesKOH (1∶2, 650 °C)4.49[22]
    CS-650-1.5Crab shellKOH (1∶5, 650 °C)4.37[31]
    LHPC-700LigninKOH (1∶4, 700 °C)4.80[35]
    ACDS-800-4Date sheetsKOH (1∶4, 800 °C)4.36[37]
    Bamboo-3-873BambooKOH (1∶3, 600 °C)4.50[38]
    GA-600GlucosamineKOH (1∶2, 600 °C)4.50[36]
    下载: 导出CSV
  • [1] Yang Z, Zhang G, Xu Y, et al. One step N-doping and activation of biomass carbon at low temperature through NaNH2: An effective approach to CO2 adsorbents[J]. Journal of CO2 Utilization,2019,33:320-329. doi: 10.1016/j.jcou.2019.06.021
    [2] Hou Z Q, Luo M Y, Yang Y T, et al. Algae-based carbons: Design, preparation and recent advances in their use in energy storage, catalysis and adsorption[J]. New Carbon Materials,2021,36(2):278-303. doi: 10.1016/S1872-5805(21)60020-3
    [3] Luo L, Chen T, Li Z, et al. Heteroatom self-doped activated biocarbons from fir bark and their excellent performance for carbon dioxide adsorption[J]. Journal of CO2 Utilization,2018,25:89-98. doi: 10.1016/j.jcou.2018.03.014
    [4] Wang JX, Liu P, Lai FY, et al. Pyrolysis of different sewage sludge feedstocks for biochar products: Characterization and application[J]. Journal of Central South University,2020,27(11):3302-3319. doi: 10.1007/s11771-020-4548-y
    [5] D'Alessandro DM, Smit B, Long JR. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition,2010,49(35):6058-6082. doi: 10.1002/anie.201000431
    [6] Xu L, Guo L, Hu G, et al. Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient CO2 sorbents[J]. RSC Advances,2015,5(48):37964-37969. doi: 10.1039/C5RA04421A
    [7] Liu X, Sun C, Liu H, et al. Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption[J]. Chemical Engineering Journal,2019,361:199-208. doi: 10.1016/j.cej.2018.11.062
    [8] Hou ZQ, Tao YP, Bai TC, et al. Efficient Rhodamine B removal by N-doped hierarchical carbons obtained from KOH activation and urea-oxidation of glucose hydrochar[J]. Journal of Environmental Chemical Engineering,2021,9(4):105757. doi: 10.1016/j.jece.2021.105757
    [9] Gao A, Guo N, Yan M, et al. Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption[J]. Microporous and Mesoporous Materials,2018,260:172-179. doi: 10.1016/j.micromeso.2017.08.048
    [10] Rehman A, Park SJ. Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced CO2 adsorption[J]. Chemical Engineering Journal,2019,362:731-742. doi: 10.1016/j.cej.2019.01.063
    [11] Tian Z, Huang J, Zhang X, et al. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption[J]. Microporous and Mesoporous Materials,2018,257:19-26. doi: 10.1016/j.micromeso.2017.08.012
    [12] Ren X, Li H, Chen J, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture[J]. Carbon,2017,114:473-481. doi: 10.1016/j.carbon.2016.12.056
    [13] Liang Y, Huang GG, Zhang Q, et al. Hierarchical porous carbons from biowaste: Hydrothermal carbonization and high-performance for Rhodamine B adsorptive removal[J]. Journal of Molecular Liquids,2021,330:115580. doi: 10.1016/j.molliq.2021.115580
    [14] Wang J, Nie P, Ding B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A,2017,5(6):2411-2428. doi: 10.1039/C6TA08742F
    [15] Yue L, Xia Q, Wang L, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science,2018,511:259-267. doi: 10.1016/j.jcis.2017.09.040
    [16] Sevilla M, Ferrero GA, Fuertes AB. Beyond KOH activation for the synthesis of superactivated carbons from hydrochar[J]. Carbon,2017,114:50-58. doi: 10.1016/j.carbon.2016.12.010
    [17] Sevilla M, Fuertes AB. A green approach to high-performance supercapacitor electrodes: The chemical activation of hydrochar with potassium bicarbonate[J]. ChemSusChem,2016,9(14):1880-1888. doi: 10.1002/cssc.201600426
    [18] Xu B, Hou S, Cao G, et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors[J]. Journal of Materials Chemistry,2012,22(36):19088-19093. doi: 10.1039/c2jm32759g
    [19] Wu X, Zhang C, Tian Z, et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture[J]. New Carbon Materials,2018,33(3):252-261. doi: 10.1016/S1872-5805(18)60338-5
    [20] Hou Y, Huang G, Li J, et al. Hydrothermal conversion of bamboo shoot shell to biochar: Preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal[J]. Journal of Analytical and Applied Pyrolysis,2019,143:104694. doi: 10.1016/j.jaap.2019.104694
    [21] Yang GZ, Ye JU, Yan YH, et al. Preparation and CO2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation[J]. RSC Advances,2017,7(7):4152-4160. doi: 10.1039/C6RA25303B
    [22] Yue L, Rao L, Wang L, et al. Efficient CO2 capture by nitrogen-doped biocarbons derived from rotten strawberries[J]. Industrial & Engineering Chemistry Research,2017,56(47):14115-14122.
    [23] Yu Z, Wang X, Song X, et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal[J]. Carbon,2015,95:852-860. doi: 10.1016/j.carbon.2015.08.105
    [24] Laginhas C, Nabais JMV, Titirici MM. Activated carbons with high nitrogen content by a combination of hydrothermal carbonization with activation[J]. Microporous and Mesoporous Materials,2016,226:125-132. doi: 10.1016/j.micromeso.2015.12.047
    [25] Liang B, Li K, Liu Y, et al. Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell[J]. Chemical Engineering Journal,2019,358:1002-1011. doi: 10.1016/j.cej.2018.09.217
    [26] Radnia H, Ghoreyshi AA, Younesi H, et al. Adsorption of Fe(II) ions from aqueous phase by chitosan adsorbent: Equilibrium, kinetic, and thermodynamic studies[J]. Desalination & Water Treatment,2012,50(1-3):348-359.
    [27] Fujiki J, Yogo K. The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping[J]. Chemical Communications,2016,52(1):186-189. doi: 10.1039/C5CC06934C
    [28] Hou Y, Yan S, Huang G, et al. Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water[J]. Bioresource Technology,2020,303:122939. doi: 10.1016/j.biortech.2020.122939
    [29] Ouyang T, Cheng K, Gao Y, et al. Molten salt synthesis of nitrogen doped porous carbon: A new preparation methodology for high-volumetric capacitance electrode materials[J]. Journal of Materials Chemistry A,2016,4(25):9832-9843. doi: 10.1039/C6TA02673G
    [30] Ren M, Jia Z, Tian Z, et al. High performance N-doped carbon electrodes obtained via hydrothermal carbonization of macroalgae for supercapacitor applications[J]. ChemElectroChem,2018,5(18):2686-2693. doi: 10.1002/celc.201800603
    [31] Chen T, Deng S, Wang B, et al. CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups[J]. RSC Advances,2015,5(60):48323-48330. doi: 10.1039/C5RA04937G
    [32] Singh G, Kim IY, Lakhi KS, et al. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity[J]. Carbon,2017,116:448-455. doi: 10.1016/j.carbon.2017.02.015
    [33] Wang H, Gao Q, Hu J. High hydrogen storage capacity of porous carbons prepared by using activated carbon[J]. Journal of the American Chemical Society,2009,131(20):7016-7022. doi: 10.1021/ja8083225
    [34] Tian Z, Xiang M, Zhou J, et al. Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass: Direct carbonization and excellent electrochemical properties[J]. Electrochimica Acta,2016,211:225-233. doi: 10.1016/j.electacta.2016.06.053
    [35] Demir M, Tessema TD, Farghaly AA, et al. Lignin‐derived heteroatom‐doped porous carbons for supercapacitor and CO2 capture applications[J]. International Journal of Energy Research,2018,42(8):2686-2700. doi: 10.1002/er.4058
    [36] Shi J, Yan N, Cui H, et al. Nitrogen doped hierarchically porous carbon derived from glucosamine hydrochloride for CO2 adsorption[J]. Journal of CO2 Utilization,2017,21:444-449. doi: 10.1016/j.jcou.2017.08.010
    [37] Li J, Michalkiewicz B, Min J, et al. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture[J]. Chemical Engineering Journal,2019,360:250-259. doi: 10.1016/j.cej.2018.11.204
    [38] Wei H, Deng S, Hu B, et al. Granular bamboo-derived activated carbon for high CO2 adsorption: The dominant role of narrow micropores[J]. ChemSusChem, 2012, 5 (120: 2354-2360.
    [39] Cai J, Li L, Lv X, et al. Large surface area ordered porous carbons via nanocasting zeolite 10X and high performance for hydrogen storage application[J]. ACS Appl Mater Interfaces,2014,6(1):167-175. doi: 10.1021/am403810j
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  99
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-09-01
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回