留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on graphene-based materials for high-performance lithium-metal batteries

WANG Xin HUANG Run-qing NIU Shu-zhang XU Lei ZHANG Qi-cheng Abbas Amini CHENG Chun

王信, 黄润青, 牛树章, 徐磊, 张启程, AbbasAmini, 程春. 石墨烯基材料在高性能锂金属电池中的研究进展. 新型炭材料, 2021, 36(4): 711-728. doi: 10.1016/S1872-5805(21)60081-1
引用本文: 王信, 黄润青, 牛树章, 徐磊, 张启程, AbbasAmini, 程春. 石墨烯基材料在高性能锂金属电池中的研究进展. 新型炭材料, 2021, 36(4): 711-728. doi: 10.1016/S1872-5805(21)60081-1
WANG Xin, HUANG Run-qing, NIU Shu-zhang, XU Lei, ZHANG Qi-cheng, Abbas Amini, CHENG Chun. Research progress on graphene-based materials for high-performance lithium-metal batteries. New Carbon Mater., 2021, 36(4): 711-728. doi: 10.1016/S1872-5805(21)60081-1
Citation: WANG Xin, HUANG Run-qing, NIU Shu-zhang, XU Lei, ZHANG Qi-cheng, Abbas Amini, CHENG Chun. Research progress on graphene-based materials for high-performance lithium-metal batteries. New Carbon Mater., 2021, 36(4): 711-728. doi: 10.1016/S1872-5805(21)60081-1

石墨烯基材料在高性能锂金属电池中的研究进展

doi: 10.1016/S1872-5805(21)60081-1
基金项目: 国家自然科学基金项目(No.51972161,No. 91963129);广东省基础与应用基础研究基金资助项目(No. 2019A1515011805);深圳市基础与应用基础基金项目(JCYJ20190809115407617);广东省电驱动力能源材料重点实验室 (No. 2018B030322001)
详细信息
    通讯作者:

    牛树章,副研究员. E-mail: niushuzhang@163.com

    程 春,副教授. E-mail: chengc@sustech.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on graphene-based materials for high-performance lithium-metal batteries

More Information
    Author Bio:

    王信、黄润青为共同第一作者

    Corresponding author: NIU Shu-zhang, Assistant professor. E-mail: niusz@sustech.edu.cnCHENG Chun, Associate professor. E-mail: chengc@sustech.edu.cn
  • 摘要: 由于相对较低的能量密度,商用锂离子电池(LIB)难以满足便携式电子和电动汽车对储能设备能量密度日益增长的需求。锂(Li)金属具有高理论比容量(3860 mAh g−1)和低的密度(0.59 g cm−3),被认为是下一代高能密度锂电池最具前途的负极之一,如Li-S和Li-O2电池。 然而,由于固态电解质界面层的不稳定,导致锂枝晶生长不可控和库伦效率低等问题,限制了锂金属电池的实际应用。 石墨烯基材料(GBMs)具有高比表面积、可调节的孔结构和表面化学特性,已被证明可以显著解决上述问题。 本文综述了利用石墨烯基材料来保护锂金属负极的各种策略,并详细讨论了在锂金属保护中具有不同功能和作用的石墨烯基纳米材料的合理设计。文中还讨论了石墨烯基纳米材料用于锂金属负极中未来发展面临的挑战和可能的解决方案。
  • FIG. 780.  FIG. 780.

    FIG. 780.. 

    1.  Illustration of graphene-based materials (GBMs) used in Li metal anodes.

    Figure  1.  Illustration of graphene-based materials as Li hosts. (a) The preparation process of patterned reduced graphene oxide@Li composite (P-rGO@Li)[35]. (b) Schematic illustration of Li plating/stripping process on graphene flake 39. (c) Schematic illustration of the rGO and Li[24]. (d) Schematic illustration of the reduced accordion-like graphene oxide array (rAGA) as Li host with water-stable and good Li-ion transport channels along with their corresponding SEM images. Voltage-time profiles of symmetrical cells at 1 mA cm−2 with a capacity of 1mAh cm−2[25]. (e) Schematic illustration of the Li nucleation and plating process on Cu foil and nitrogen-doped graphene[26]. (f) The fabrication process of the N-doped porous graphene–Li anode and its rate performance in the plating-stripping processes[27].

    Figure  2.  Graphene and lithiophilic material composites as Li hosts. (a) Formation of porous G/ZnO@Li electrode and the corresponding SEM image[54]. (b) 3D MG@Li anode preparation process diagram. Photograph and top SEM images of Li deposition on MXene and rGO electrode[55]. (c) Illustration of Li deposition process on Li4.4Sn@graphene hollow sphere electrode[68]. (d) SEM image and schematic illustration of Au-rGO[57]. (e) Optical photos of two segments of onion stems and charge transfer schematics based on GBOMAs scaffolds in Li batteries[58].

    Figure  3.  Graphene-modified current collectors as Li hosts. (a) Digital images of LIGHS@Cu, PI@Cu, and Cu, and the illustration of LIGHS@Cu microstructure[88]. (b) Schematic illustrations of the preparation stages of 3D Cu@NG[89]. (c) Schematic of the fabrication process of the hierarchical 3D-AGBN host[90]. (d) Illustration of the Cu foil and the Au-GA modified Cu foil for Li plating/stripping behavior l[91]. (e) Li nucleation and deposition behaviors on the 3D g-C3N4/G/g-C3N4 electrode; CE of Li deposition on different substrates and cycle performance of Li-3D g-C3N4/G/g-C3N4||LiFePO4 (LFP) at 0.3 C[92]. (f) Schematic illustration of uniform Li deposition stages on the ERG-hybridized 3D carbon nanofiber (CNF) substrate, and the TEM image of SiO2@ERG-CNF[93].

    Figure  4.  Graphene-based materials as the Li metal protective layers. (a) Schematic illustration of mechanically exfoliated graphene-coated Li metal and the corresponding SEM images; Young’s modulus and typical force-indentation curve of the Graphene/Li anode surface after Li plating; Voltage-time profiles of symmetrical cells with Li and graphene-Li composite as anode under different current densities[105]. (b) Preparation process and characterizations of the 2D mPPyGO heterostructure; the electrochemical nucleation and deposition behaviors of electrodes with dual-functional Li-ion redistributors[106]. (c) Schematic process of the multifunctional protective (MAP) layer on Li metal[107].

    Figure  5.  Characterization of the graphene-modified separator. (a) Schematic illustration of the preparation process of a PDA/Gr-CMC separator along with the SEM images [113]. (b) Illustration of Li dendrite growth process with the NSG-PE separator and PE separator (left)[114]. (c) Preparation process of MQD@NG along with the digital photograph of the MQD@NG/PP; Voltage-time profiles of symmetrical cells for the Li|MQD@NG/PP|Li[115].

  • [1] Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy,2019,4(3):180-186. doi: 10.1038/s41560-019-0338-x
    [2] Zou P, Sui Y, Zhan H, et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields[J]. Chemical Reviews,2021,121(10):5986-6056. doi: 10.1021/acs.chemrev.0c01100
    [3] Zhang C, Huang Z, Lv W, et al. Carbon enables the practical use of lithium metal in a battery[J]. Carbon,2017,123:744-755. doi: 10.1016/j.carbon.2017.08.027
    [4] Peng H J, Huang J Q, Zhang Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews,2017,46(17):5237-5288. doi: 10.1039/C7CS00139H
    [5] Zhai P B, Liu L X, Gu X K, et al. Interface engineering for lithium metal anodes in liquid electrolyte[J]. Advanced Energy Materials,2020,10(34):2001257. doi: 10.1002/aenm.202001257
    [6] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [7] Niu S, Zhang S W, Shi R, et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries[J]. Energy Storage Materials,2020,33:73-81. doi: 10.1016/j.ensm.2020.05.033
    [8] Li X, Li B H, He Y H, et al. A review of graphynes: Properties, applications and synthesis[J]. New Carbon Materials,2020,35(6):619-629. doi: 10.1016/S1872-5805(20)60518-2
    [9] Lee J, Choi S H, Qutaish H, et al. Structurally stabilized lithium-metal anode via surface chemistry engineering[J]. Energy Storage Materials,2021,37:315-324. doi: 10.1016/j.ensm.2021.02.019
    [10] Han Z Y, Zhang C, Lin Q W, et al. A Protective layer for lithium metal anode: why and how[J]. Small Methods,2021,5(4):2001035. doi: 10.1002/smtd.202001035
    [11] Meyerson M L, Papa P E, Heller A, et al. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings[J]. ACS Nano,2021,15(1):29-46. doi: 10.1021/acsnano.0c05636
    [12] Lu Z, Guo Y, Zhang S, et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-Free alkali-metal battery[J]. Advanced Materials,2021:e2101745. doi: 10.1002/adma.202101745
    [13] Liu Y, Li Q Q, Zhang H, et al. Research progress on the use of micro/nano carbon materials for antibacterial dressings[J]. New Carbon Materials,2020,35(4):323-335. doi: 10.1016/S1872-5805(20)60492-9
    [14] Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials,2016,2:107-138. doi: 10.1016/j.ensm.2015.10.002
    [15] Zhang E S, Lei C S, Li J, et al. The preparation of super lightweight magnetic Fe3O4/graphene/carbon aerogels and their use in electromagnetic interference shielding[J]. New Carbon Materials,2020,35(6):707-715. doi: 10.1016/S1872-5805(20)60524-8
    [16] Wang S, Wang X, Shi X Y, et al. A three-dimensional polyoxometalate/graphene aerogel as a highly efficient and recyclable absorbent for oil/water separation[J]. New Carbon Materials,2021,36(1):189-195. doi: 10.1016/S1872-5805(21)60013-6
    [17] Bai L, Zhang Y, Tong W, et al. Graphene for energy storage and conversion: Synthesis and interdisciplinary applications[J]. Electrochemical Energy Reviews,2020,3(2):395-430. doi: 10.1007/s41918-019-00042-6
    [18] Wang B, Ruan T, Chen Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials,2020,24:22-51. doi: 10.1016/j.ensm.2019.08.004
    [19] Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [20] Niu S Z, Zhou G M, Lv W, et al. Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries[J]. Carbon,2016,109:1-6. doi: 10.1016/j.carbon.2016.07.062
    [21] Wang J B, Ren Z, Hou Y, et al. A review of graphene synthesis at low temperatures by CVD methods[J]. New Carbon Materials,2020,35(3):193-208. doi: 10.1016/S1872-5805(20)60484-X
    [22] Zhang J, Song L, Zhao C, et al. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. New Carbon Materials,2021,36(1):209-216. doi: 10.1016/S1872-5805(21)60016-1
    [23] Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nat Nanotechnol,2016,11(7):626-32. doi: 10.1038/nnano.2016.32
    [24] Li N, Zhang K, Xie K, et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers[J]. Advanced Materials,2020,32(7):e1907079. doi: 10.1002/adma.201907079
    [25] Dong L, Nie L, Liu W. Water-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene architecture[J]. Advanced Materials,2020,32(14):e1908494. doi: 10.1002/adma.201908494
    [26] Zhang R, Chen X R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angew Chem Int Ed Engl,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [27] Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials,2019,31(2):1805334. doi: 10.1002/adma.201805334
    [28] Moorthy B, Ponraj R, Yun J H, et al. Ice-templated free-standing reduced graphene oxide for dendrite-free lithium metal batteries[J]. ACS Applied Energy Materials,2020,3(11):11053-11060. doi: 10.1021/acsaem.0c01946
    [29] Hu X, Cao Y, Deng Y, et al. Graphene film with folds for a stable lithium metal anode[J]. Ionics,2020,26(11):5357-5365. doi: 10.1007/s11581-020-03689-0
    [30] Li Z, Li X, Zhou L, et al. A collaborative strategy for stable lithium metal anodes by using three-dimensional nitrogen-doped graphene foams[J]. Nanoscale,2018,10(10):4675-4679. doi: 10.1039/C7NR08727F
    [31] Mukherjee R, Thomas A V, Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nat Commun,2014,5:3710. doi: 10.1038/ncomms4710
    [32] Zhang Y J, Xia X H, Wang D H, et al. Integrated reduced graphene oxide multilayer/Li composite anode for rechargeable lithium metal batteries[J]. Rsc Advances,2016,6(14):11657-11664. doi: 10.1039/C5RA25553H
    [33] Zhao C, Yu C, Li S, et al. Ultrahigh-capacity and long-Life lithium-Metal batteries enabled by engineering carbon nanofiber-stabilized graphene aerogel film host[J]. Small,2018,14(42):e1803310. doi: 10.1002/smll.201803310
    [34] Chen H., Yang Y., Boyle D. T., et al., Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, DOI: 10.1038/s41560-021-00833-6.
    [35] Wang A, Zhang X, Yang Y W, et al. Horizontal centripetal plating in the patterned voids of Li/graphene composites for stable lithium-metal anodes[J]. Chem,2018,4(9):2192-2200. doi: 10.1016/j.chempr.2018.06.017
    [36] Pan L, Luo Z, Zhang Y, et al. Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode[J]. Acs Applied Materials & Interfaces,2019,11(47):44383-44389.
    [37] Zhang R, Wang N, Shi C S, et al. Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode[J]. Carbon,2020,161:198-205. doi: 10.1016/j.carbon.2020.01.077
    [38] Yao P, Chen Q, Mu Y, et al. 3D hollow reduced graphene oxide foam as a stable host for high-capacity lithium metal anodes[J]. Materials Chemistry Frontiers,2019,3(2):339-343. doi: 10.1039/C8QM00499D
    [39] Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials,2016,28(11):2155-62. doi: 10.1002/adma.201504117
    [40] Meng Q Q, Deng B, Zhang H M, et al. Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene[J]. Energy Storage Materials,2019,16:419-425. doi: 10.1016/j.ensm.2018.06.024
    [41] Nie X, Zhang A Y, Liu Y H, et al. Synthesis of interconnected graphene framework with two-dimensional protective layers for stable lithium metal anodes[J]. Energy Storage Materials,2019,17:341-348. doi: 10.1016/j.ensm.2018.09.028
    [42] Li G., Xu S., Li B., et al., In‐plane defect engineering enabling ultra‐stable graphene paper‐based hosts for lithium metal anodes[J]. Chemelectrochem, 2021, DOI: 10.1002/celc.202100678.
    [43] Liu W, Zhai P B, Qin S J, et al. Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth[J]. Journal of Energy Chemistry,2021,56:463-469. doi: 10.1016/j.jechem.2020.08.019
    [44] Li Z H, Li X L, Zhou L, et al. A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks[J]. Nano Energy,2018,49:179-185. doi: 10.1016/j.nanoen.2018.04.040
    [45] Niu S, Lv W, Zhou G, et al. N and S co-doped porous carbon spheres prepared using L-cysteine as a dual functional agent for high-performance lithium-sulfur batteries[J]. Chem Commun (Camb),2015,51(100):17720-3. doi: 10.1039/C5CC07226C
    [46] Chen X, Chen X R, Hou T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Sci Adv,2019,5(2):eaau7728. doi: 10.1126/sciadv.aau7728
    [47] Han J, Zhang L L, Lee S, et al. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications[J]. ACS Nano,2013,7:19-26. doi: 10.1021/nn3034309
    [48] Niu S Z, Lv W, Zhang C, et al. A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(40):20218-20224. doi: 10.1039/C5TA05324B
    [49] Wang T S, Zhai P B, Legut D, et al. S-Doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes[J]. Advanced Energy Materials,2019,9(24):1804000. doi: 10.1002/aenm.201804000
    [50] Lv Q, Song R, Wang B, et al. Three-dimensional nitrogen-doped graphene aerogel toward dendrite-free lithium-metal anode[J]. Ionics,2020,26(1):13-22. doi: 10.1007/s11581-019-03213-z
    [51] Tang Y, Sha J W, Wang N, et al. Covalently bonded 3D rebar graphene foam for ultrahigh-areal-capacity lithium-metal anodes by in-situ loose powder metallurgy synthesis[J]. Carbon,2020,158:536-544. doi: 10.1016/j.carbon.2019.11.022
    [52] Liu S, Wang A, Li Q, et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes[J]. Joule,2018,2(1):184-193. doi: 10.1016/j.joule.2017.11.004
    [53] Yu Y K, Huang W, Song X, et al. Thermally reduced graphene paper with fast Li ion diffusion for stable Li metal anode[J]. Electrochimica Acta,2019,294:413-422. doi: 10.1016/j.electacta.2018.10.117
    [54] Deng W, Zhou X, Fang Q, et al. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes[J]. Advanced Energy Materials,2018,8(12):1703152. doi: 10.1002/aenm.201703152
    [55] Shi H, Zhang C J, Lu P, et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes[J]. ACS Nano,2019,13(12):14308-14318. doi: 10.1021/acsnano.9b07710
    [56] Zhao J, Zhou G, Yan K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nat Nanotechnol,2017,12(10):993-999. doi: 10.1038/nnano.2017.129
    [57] Pu J, Li J C, Shen Z H, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes[J]. Advanced Functional Materials,2018,28(41):1804133. doi: 10.1002/adfm.201804133
    [58] Ma T, Su T Y, Zhang L, et al. Scallion-inspired graphene scaffold enabled high rate lithium metal battery[J]. Nano Letters,2021,21(6):2347-2355. doi: 10.1021/acs.nanolett.0c04033
    [59] Xia M, Zhang N, Ge C C. Mesoporous silica-coated graphene nanosheets for uniform lithium deposition toward stable lithium metal anode[J]. Chemical Physics Letters,2021,765 doi: 10.1016/j.cplett.2020.138245
    [60] Tian Z Y, Li N, Xie K, et al. Towards high energy-high power dendrite-free lithium metal batteries: The novel hydrated vanadium oxide/graphene vertical bar vertical bar silicon nitride/lithium system[J]. Journal of Power Sources,2019,417:14-20. doi: 10.1016/j.jpowsour.2019.02.007
    [61] Zhao L, Wang W, Zhao X, et al. Ni3N nanocrystals decorated reduced graphene oxide with high ionic conductivity for stable lithium metal anode[J]. ACS Applied Energy Materials,2019,2(4):2692-2698. doi: 10.1021/acsaem.9b00014
    [62] Yao W, Zhang F, Qiu W, et al. General synthesis of uniform three-dimensional metal oxides/reduced graphene oxide aerogels by a nucleation-inducing growth strategy for high-performance lithium storage[J]. Acs Sustainable Chemistry & Engineering,2019,7(1):847-857.
    [63] Chen K, Sun Z, Fang R, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1707592. doi: 10.1002/adfm.201707592
    [64] Liu W, Chen Z, Zhang Z, et al. Lithium-activated SnS–graphene alternating nanolayers enable dendrite-free cycling of thin sodium metal anodes in carbonate electrolyte[J]. Energy & Environmental Science,2021,14(1):382-395.
    [65] Deng W, Zhu W, Zhou X, et al. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity[J]. Energy Storage Materials,2018,15:266-273. doi: 10.1016/j.ensm.2018.05.005
    [66] Bao W, Liu L, Wang C, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(13):1702485. doi: 10.1002/aenm.201702485
    [67] Wang C Y, Zheng Z J, Feng Y Q, et al. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries[J]. Nano Energy,2020,74:104817. doi: 10.1016/j.nanoen.2020.104817
    [68] Jiang Y, Jiang J, Wang Z, et al. Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries[J]. Nano Energy,2020,70:104504. doi: 10.1016/j.nanoen.2020.104504
    [69] Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proc Natl Acad Sci U S A,2016,113(11):2862-7. doi: 10.1073/pnas.1518188113
    [70] Xu Q S, Yang X F, Rao M M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials,2020,26:73-82. doi: 10.1016/j.ensm.2019.12.028
    [71] Yoo Y G, Park S, Bae S, et al. Transition metal-free graphene framework based on disulfide bridges as a Li host material[J]. Energy Storage Materials,2018,14:238-245. doi: 10.1016/j.ensm.2018.04.007
    [72] Kim M S, Deepika, Lee S H, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes[J]. Science Advances,2019,5(10):eaax5587. doi: 10.1126/sciadv.aax5587
    [73] Wang H, Li Y, Li Y, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy[J]. Nano Letters,2019,19(2):1326-1335. doi: 10.1021/acs.nanolett.8b04906
    [74] Xiong K R, Liang Y R, Yi O Y, et al. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: simple synthesis and their enhanced antibacterial activity[J]. New Carbon Materials,2019,34(5):426-432. doi: 10.1016/S1872-5805(19)60024-7
    [75] Diao W Y, Xie D, Li Y F, et al. Sustainable and robust graphene cellulose paper decorated with lithiophilic Au nanoparticles to enable dendrite-free and high-power lithium metal anode[J]. Chemistry-a European Journal,2021,27(31):8168-8177. doi: 10.1002/chem.202100440
    [76] Han Z, Huang Z, Li T, et al. Regulating the stable lithium and polysulfide deposition in batteries by a gold nanoparticle modified vertical graphene host[J]. Advanced Energy and Sustainability Research,2021:2100044. doi: 10.1002/aesr.202100044
    [77] Yan K, Lu Z D, Lee H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy,2016,1:16010. doi: 10.1038/nenergy.2016.10
    [78] Jin S, Ye Y, Niu Y, et al. Solid–solution-based metal alloy phase for highly reversible lithium metal anode[J]. Journal of the American Chemical Society,2020,142(19):8818-8826. doi: 10.1021/jacs.0c01811
    [79] Hou Z, Yu Y, Wang W, et al. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode[J]. Acs Applied Materials & Interfaces,2019,11(8):8148-8154.
    [80] Shi H, Li Y, Lu P, et al. Single-atom cobalt coordinated to oxygen sites on graphene for stable lithium metal anodes[J]. Acta Physico Chimica Sinica,2020,0(0):2008033. doi: 10.3866/PKU.WHXB202008033
    [81] Zhou J, Wu F, Wei G, et al. Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries[J]. Journal of Power Sources,2021,495:229773. doi: 10.1016/j.jpowsour.2021.229773
    [82] Yang Y, Zhao M, Geng H, et al. Three-dimensional graphene/Ag aerogel for durable and stable Li metal anodes in carbonate-based Electrolytes[J]. Chemistry-a European Journal,2019,25(19):5036-5042. doi: 10.1002/chem.201805941
    [83] Zhuang H, Zhaoe P, Xu Y. Superlithiophilic graphene-silver enabling ultra-stable hosts for lithium metal anodes[J]. Inorganic Chemistry Frontiers,2020,7(4):897-904. doi: 10.1039/C9QI01457H
    [84] Kong Y F, Ma Z, Zheng D P, et al. Space-confined strategy to stabilize the lithium storage in the graphene and silver nanoparticles (AgNPs@GO) composite anode of lithium metal batteries[J]. Materials Letters,2019,251:118-121. doi: 10.1016/j.matlet.2019.05.068
    [85] Xin G, Zhu W, Deng Y, et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres[J]. Nat Nanotechnol,2019,14(2):168-175. doi: 10.1038/s41565-018-0330-9
    [86] Xin G, Yao T, Sun H, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science,2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
    [87] Park S, Jin H J, Yun Y S. Advances in the design of 3D-structured electrode materials for lithium-metal anodes[J]. Advanced Materials,2020,32(51):e2002193. doi: 10.1002/adma.202002193
    [88] Yi J, Chen J, Yang Z, et al. Facile patterning of laser‐induced graphene with tailored li nucleation kinetics for stable lithium‐metal batteries[J]. Advanced Energy Materials,2019,9(38):1901796. doi: 10.1002/aenm.201901796
    [89] Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes[J]. Advanced Energy Materials,2018,8(23):1800914. doi: 10.1002/aenm.201800914
    [90] Xue P, Liu S, Shi X, et al. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes[J]. Advanced Materials,2018,30(44):e1804165. doi: 10.1002/adma.201804165
    [91] Yang T, Li L, Wu F, et al. A soft Lilthiophilic graphene aerogel for stable lithium metal anode[J]. Advanced Functional Materials,2020,30(30):2002013. doi: 10.1002/adfm.202002013
    [92] Zhai P, Wang T, Jiang H, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials,2021,33(13):e2006247. doi: 10.1002/adma.202006247
    [93] Song Q, Yan H, Liu K, et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation[J]. Advanced Energy Materials,2018,8(22):1800564. doi: 10.1002/aenm.201800564
    [94] Shi L, Hu Z, Hong Y. PVDF-supported graphene foam as a robust current collector for lithium metal anodes[J]. Rsc Advances,2020,10(35):20915-20920. doi: 10.1039/D0RA03352A
    [95] Fang Y, Hsieh Y Y, Khosravifar M, et al. Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries[J]. Materials Science and Engineering: B,2021,267:115067. doi: 10.1016/j.mseb.2021.115067
    [96] Kang H K, Woo S G, Kim J H, et al. Few-layer graphene island seeding for dendrite-free Li metal electrodes[J]. Acs Applied Materials & Interfaces,2016,8(40):26895-26901.
    [97] Liu W, Xia Y, Wang W, et al. Pristine or highly effective understanding the role of graphene structure for stable lithium metal plating[J]. Advanced Energy Materials,2019,9(3):1802918. doi: 10.1002/aenm.201802918
    [98] Ren F, Lu Z, Zhang H, et al. Pseudocapacitance induced uniform plating/stripping of Li metal anode in vertical graphene nanowalls[J]. Advanced Functional Materials,2018,28(50):1805638. doi: 10.1002/adfm.201805638
    [99] Hu Z L, Li Z Z, Xia Z, et al. PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries[J]. Energy Storage Materials,2019,22:29-39. doi: 10.1016/j.ensm.2018.12.020
    [100] Assegie A A, Chung C C, Tsai M C, et al. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries[J]. Nanoscale,2019,11(6):2710-2720. doi: 10.1039/C8NR06980H
    [101] Zhang F, Shen F, Fan Z Y, et al. Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode[J]. Rare Metals,2018,37(6):510-519. doi: 10.1007/s12598-018-1054-6
    [102] Kang H K, Woo S G, Kim J H, et al. Three-dimensional monolithic corrugated graphene/Ni foam for highly stable and efficient Li metal electrode[J]. Journal of Power Sources,2019,413:467-475. doi: 10.1016/j.jpowsour.2018.12.075
    [103] Yang G, Chen J, Xiao P, et al. Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode[J]. Journal of Materials Chemistry A,2018,6(21):9899-9905. doi: 10.1039/C8TA02810A
    [104] Huang Z, Kong D, Zhang Y, et al. Vertical graphenes grown on a flexible graphite paper as an all-carbon current collector towards stable Li deposition[J]. Research (Washington, D. C.),2020,2020:7163948-7163948.
    [105] Zhou Y, Zhang X, Ding Y, et al. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries[J]. Advanced Materials,2020,32(48):e2005763. doi: 10.1002/adma.202005763
    [106] Shi H, Qin J, Huang K, et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angew Chem Int Ed Engl,2020,59(29):12147-12153. doi: 10.1002/anie.202004284
    [107] Li S, Wang X S, Li Q D, et al. A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte[J]. Journal of Materials Chemistry A,2021,9(12):7667-7674. doi: 10.1039/D1TA00408E
    [108] Ye L, Liao M, Cheng X, et al. Lithium metal anodes working at 60 mA cm−2 and 60 mAh cm−2 through nanoscale lithium-ion adsorbing[J]. Angew Chem Int Ed Engl,2021 doi: 10.1002/anie.202106047
    [109] Zhang Y J, Xia X H, Wang X L, et al. Graphene oxide modified metallic lithium electrode and its electrochemical performances in lithium-sulfur full batteries and symmetric lithium-metal coin cells[J]. Rsc Advances,2016,6(70):66161-66168. doi: 10.1039/C6RA13039A
    [110] Hu Z, Zhang X, Chen S. A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries[J]. Journal of Power Sources,2020,477:228754. doi: 10.1016/j.jpowsour.2020.228754
    [111] Bai M, Xie K, Yuan K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials,2018,30(29):e1801213. doi: 10.1002/adma.201801213
    [112] Wondimkun Z T, Beyene T T, Weret M A, et al. Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries[J]. Journal of Power Sources,2020,450:227589. doi: 10.1016/j.jpowsour.2019.227589
    [113] Kim P J, Pol V G. High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer[J]. Advanced Energy Materials,2018,8(36):1802665. doi: 10.1002/aenm.201802665
    [114] Shin W K, Kannan A G, Kim D W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries[J]. Acs Applied Materials & Interfaces,2015,7(42):23700-23707.
    [115] Yu B, Chen D, Wang Z, et al. Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries[J]. Chemical Engineering Journal,2020,399:125837. doi: 10.1016/j.cej.2020.125837
    [116] Rodriguez J R, Kim P J, Kim K, et al. Engineered heat dissipation and current distribution boron nitride-graphene layer coated on polypropylene separator for high performance lithium metal battery[J]. Journal of Colloid and Interface Science,2021,583:362-370. doi: 10.1016/j.jcis.2020.09.009
    [117] Lei T, Chen W, Lv W, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule,2018,2(10):2091-2104. doi: 10.1016/j.joule.2018.07.022
    [118] Huo H, Li X, Chen Y, et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries[J]. Energy Storage Materials,2020,29:361-366. doi: 10.1016/j.ensm.2019.12.022
    [119] Ren W, Zheng Y, Cui Z, et al. Recent progress of functional separators in dendrite inhibition for lithium metal batteries[J]. Energy Storage Materials,2021,35:157-168. doi: 10.1016/j.ensm.2020.11.019
    [120] Deng N, Kang W, Liu Y, et al. A review on separators for lithium-sulfur battery: Progress and prospects[J]. Journal of Power Sources,2016,331:132-155. doi: 10.1016/j.jpowsour.2016.09.044
    [121] Niu S Z, Lv W, Zhou G M, et al. Electrostatic-spraying an ultrathin, multifunctional and compact coating onto a cathode for a long-life and high-rate lithium-sulfur battery[J]. Nano Energy,2016,30:138-145. doi: 10.1016/j.nanoen.2016.09.044
    [122] Niu S, Lv W, Zhang C, et al. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium–sulfur batteries[J]. Journal of Power Sources,2015,295:182-189. doi: 10.1016/j.jpowsour.2015.06.122
    [123] Wang R, Luo C, Wang T, et al. Bidirectional catalysts for liquid-solid redox conversion in lithium-sulfur Batteries[J]. Advanced Materials,2020,32(32):e2000315. doi: 10.1002/adma.202000315
    [124] Shao Z T, Wu L L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-225. doi: 10.1016/S1872-5805(21)60015-X
    [125] Sun C S, Guo D C, Shao Q J, et al. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):196-204.
    [126] Chen Y, Niu S, Lv W, et al. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries[J]. Chinese Chemical Letters,2019,30(2):521-524. doi: 10.1016/j.cclet.2018.04.019
    [127] Xue W, Shi Z, Suo L, et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities[J]. Nature Energy,2019,4(5):374-382. doi: 10.1038/s41560-019-0351-0
  • 加载中
图(7)
计量
  • 文章访问数:  1527
  • HTML全文浏览量:  945
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-06-30
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回