留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge storage mechanisms of manganese dioxide-based supercapacitors: A review

TANG Xiao-ning ZHU Shao-kuan NING Jian YANG Xing-fu HU Min-yi SHAO Jiao-jing

唐晓宁, 朱绍宽, 宁坚, 杨兴富, 胡敏艺, 邵姣婧. 二氧化锰基超级电容器的电荷储能机理研究进展[J]. 新型炭材料, 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3
引用本文: 唐晓宁, 朱绍宽, 宁坚, 杨兴富, 胡敏艺, 邵姣婧. 二氧化锰基超级电容器的电荷储能机理研究进展[J]. 新型炭材料, 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3
TANG Xiao-ning, ZHU Shao-kuan, NING Jian, YANG Xing-fu, HU Min-yi, SHAO Jiao-jing. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. NEW CARBON MATERIALS, 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3
Citation: TANG Xiao-ning, ZHU Shao-kuan, NING Jian, YANG Xing-fu, HU Min-yi, SHAO Jiao-jing. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. NEW CARBON MATERIALS, 2021, 36(4): 702-710. doi: 10.1016/S1872-5805(21)60082-3

二氧化锰基超级电容器的电荷储能机理研究进展

doi: 10.1016/S1872-5805(21)60082-3
基金项目: 国家自然科学基金 (51972070, 52062004和22065005); 贵州省自然科学基金重点项目 ([2020]1Z042); 贵州大学培育项目(GDPY[2019]01); 贵州大学引进人才科研项目(202052); 贵州大学实验室开放项目(SYSKF2021-004)
详细信息
    通讯作者:

    邵姣婧,博士,教授. E-mail:shaojiao_jing@163.com

  • 中图分类号: TB332; TM53

Charge storage mechanisms of manganese dioxide-based supercapacitors: A review

Funds: This work was supported by the National Natural Science Foundation of China (Nos. 51972070, 52062004 and 22065005), Key Project of Guizhou Provincial Science and Technology Foundation (No. [2020]1Z042), Cultivation Project of Guizhou University (No. GDPY[2019]01), Introduction of Talent Research Fund of Guizhou University (No. 202052), and Open Laboratory Fund of Guizhou University (No. SYSKF2021-004)
More Information
  • 摘要: 碳基材料(如碳纳米管、石墨烯和介孔碳)是典型的电化学双电层超级电容器电极材料。虽然碳基材料表现出优异的电化学稳定性能,但其比电容较低。因此,常用赝电容材料与其复合。赝电容材料中,二氧化锰(MnO2)因理论比电容高、价格低、储量丰富和环境友好等特点,被广泛应用于超级电容器中。然而,MnO2导电性能差、在循环充放电过程中相转变严重和体积变化大等问题,导致其在实际应用中常表现出较低的比电容。为了研发高性能MnO2/碳基超级电容器,必须深入研究其储能机理。因此,本文分析和总结了4种MnO2材料的电荷储能机理:电解液阳离子的表面吸附机理、电解液阳离子的嵌入-脱出机理、隧道储能机理和电荷补偿机理。虽然电荷补偿机理是涉及阳离子预先插入的MnO2 (AxMnO2)材料,但4种机理的本质都是Mn3+和Mn4+之间的相互转化,且由于储能过程复杂,MnO2基超级电容器储能过程常是几种机理共同作用的结果。最后,对高性能MnO2/碳基超级电容器的前景进行了展望,对其面临的主要挑战和发展策略进行了总结。
  • FIG. 779.  FIG. 779.

    FIG. 779.. 

    Figure  1.  Ragone plot of several EES devices[4]. Reprinted with permission.

    Figure  2.  Charge storage mechanisms of MnO2-based electrodes.

    Figure  3.  In-situ Raman spectra of the MnO2 electrode at different charge-discharge states[34]. Reprinted with permission.

    Figure  4.  Crystalline structures of α-, β-, γ-, δ- and λ-MnO2[38-39]. Reprinted with permission.

    Figure  5.  Insertion process of monovalent and bivalent cations[47]. Reprinted with permission.

    Figure  6.  (a) To obtain Na0.5MnO2 via electrochemical oxidation at different CV cycle numbers. (b) Specific capacitance of the electrode as a function of cycle number at 10 mV s−1 during electrochemical oxidation. (c) The charge-storage mechanism of the Na0.5MnO2[50]. Reprinted with permission.

    Figure  7.  (a) Schematic showing different reaction processes of MnO2 nanosheets and ZnxMnO2 nanowires. (b) Schematic illustration of the designed aqueous ZnxMnO2//activated CC zinc-ion HSCs[53]. Reprinted with permission.

    Table  1.   Dwelling time or structure type, SSA and specific capacitance of MnO2.

    SamplesSSA (m2 g−1)Capacitance (F g−1)Refs.
    Dwelling time (1,2,3,6 h)MnO2-1H16.736387.1[23]
    MnO2-2H2.841230.6
    MnO2-4H2.163242.5
    MnO2-6H1.087193.1
    StructureMnO2-N18270[31]
    MnO2-HU71215
    MnO2-SB15242
    StructureR-MnO224.13144[32]
    S-MnO268.30133
    F-MnO283.17171
    L-MnO28.78117
    *Note: In reference[31], MnO2-N, MnO2-H, and MnO2-S represent MnO2 nanorods, MnO2 hollow urchins, and MnO2 smooth balls, respectively.
    下载: 导出CSV

    Table  2.   Specific capacitance dependence on MnO2 phase structures and SSA.

    MnO2TunnelSize(nm)SSA(m2 g−1)Specific capacitance (F g−1)Electrolyte Refs.
    α 2×2(1D) 0.46×0.46 19.29 241 Na2SO4 [33]
    α(m) 2×2(1D) 0.46×0.46 123.39 297 Na2SO4 [33]
    α 2×2(1D) 0.46×0.46 29 125 K2SO4 [40]
    α(m) 2×2(1D) 0.46×0.46 200 150 K2SO4 [41]
    α(m)(H2SO4) 208 150 K2SO4 [41]
    α(m)(H2O) 8 125 K2SO4 [41]
    δ 1×∞(2D) 0.7 20.93 236 Na2SO4 [33]
    δ 1×∞(2D) 0.7 45 225 K2SO4 [40]
    δ(H2O) 1×∞(2D) 0.7 17 110 K2SO4 [41]
    δ(H2SO4) 89 105 K2SO4 [41]
    δ 3 80 K2SO4 [41]
    γ 1×2(1D) 0.23×0.46 31.56 107 Na2SO4 [33]
    γ 1×2(1D) 0.23×0.46 85 87 K2SO4 [40]
    γ 1×2(1D) 0.23×0.46 41 30 K2SO4 [41]
    λ(spinel) 3D - 5.21 21 Na2SO4 [33]
    λ(spinel) 3D - 156 241 K2SO4 [40]
    λ(spinel) 3D - 35 70 K2SO4 [41]
    β 1×1(1D) 0.189×0.189 - 9 Na2SO4 [33]
    β 1×1(1D) 0.189×0.189 35 28 K2SO4 [40]
    β 1×1(1D) 0.189×0.189 1 5 K2SO4 [41]
    下载: 导出CSV
  • [1] Dubal D P, Holze R. Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors[J]. Pure and Applied Chemistry,2014,86:611-632. doi: 10.1515/pac-2013-1021
    [2] Aric A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials,2005,4:366-377. doi: 10.1038/nmat1368
    [3] Li P, Shang T, Dong X, et al. A review of compact carbon design for supercapacitors with high volumetric performance[J]. Small,2021:2007548. doi: 10.1002/smll.202007548
    [4] Wang J G, Kang F Y, Wei B Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science,2015,74:51-124. doi: 10.1016/j.pmatsci.2015.04.003
    [5] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23:4828-4850. doi: 10.1002/adma.201100984
    [6] Chen H, Zhou M, Wang Z, et al. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors[J]. Electrochimica Acta,2014,148:187-194. doi: 10.1016/j.electacta.2014.10.042
    [7] Zhao W, Zhou M, Hao C J, et al. Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors[J]. Chemistry-An Asian Journal,2014,9:2789-2797. doi: 10.1002/asia.201402338
    [8] Cao Y, Yang W, Wang M, et al. Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors[J]. International Journal of Hydrogen Energy,2021,46:18179-18206. doi: 10.1016/j.ijhydene.2021.03.003
    [9] Zaka A, Hayat K, Mittal V. Recent trends in the use of three-dimensional graphene structures for supercapacitors[J]. ACS Applied Electronic Materials,2021,3:574-596. doi: 10.1021/acsaelm.0c00953
    [10] Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41:797-828. doi: 10.1039/C1CS15060J
    [11] Huang M, Li F, Dong F, et al. MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2015,3:21380-21423. doi: 10.1039/C5TA05523G
    [12] Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry,2015,144:220-223.
    [13] Lee H Y, Manivannan V, Goodenough J B. Electrochemical capacitors with KCl electrolyte[J]. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry,1999,2:565-577.
    [14] Chu J, Lu D, Ma J, et al. Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors[J]. Materials Letters,2017,193:263-265. doi: 10.1016/j.matlet.2017.01.140
    [15] Dong J, Lu G, Wu F, et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors[J]. Applied Surface Science,2018,427:986-993. doi: 10.1016/j.apsusc.2017.07.291
    [16] Xie A, Tao F, Jiang C, et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry,2017,789:29-37. doi: 10.1016/j.jelechem.2017.02.032
    [17] Bai X, Tong X, Gao Y, et al. Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors[J]. Electrochimica Acta,2018,281:525-533. doi: 10.1016/j.electacta.2018.06.003
    [18] Gueon D, Moon J H. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors[J]. ACS Sustainable Chemistry and Engineering,2017,5:2445-2453. doi: 10.1021/acssuschemeng.6b02803
    [19] Zhang M, Zheng H, Zhu H, et al. Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors[J]. Vacuum,2020,176:109315. doi: 10.1016/j.vacuum.2020.109315
    [20] Zhu J, Youlong X, Hu J, et al. Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance[J]. Journal of Power Sources,2018,393:135-144. doi: 10.1016/j.jpowsour.2018.05.022
    [21] Sair F N I, So P R, Ting J M. MnO2 with controlled phase for use in supercapacitors[J]. Journal of the American Ceramic Society,2017,100:1642-1652. doi: 10.1111/jace.14636
    [22] Xia T, Wang Q, Wu W, et al. Fabrication and characterization of MnO2-coated carbon fabrics from silk for shape-editable supercapacitors[J]. Journal of Alloys and Compounds,2021,854:157289. doi: 10.1016/j.jallcom.2020.157289
    [23] Oyedotun K O, Mirghni A A, Fasakin O, et al. Effect of growth-time on electrochemical performance of birnessite manganese oxide (δ-MnO2) as electrodes for supercapacitors: an insight into neutral aqueous electrolytes[J]. Journal of Energy Storage,2021,36:102419. doi: 10.1016/j.est.2021.102419
    [24] Sui Z, Chang Z, Xu X, et al. Direct growth of MnO2 on highly porous nitrogen-doped carbon nanowires for asymmetric supercapacitors[J]. Diamond and Related Materials,2020,108:107988. doi: 10.1016/j.diamond.2020.107988
    [25] Xie G, Liu X, Li Q, et al. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors[J]. Journal of Materials Science,2017,52:10915-10926. doi: 10.1007/s10853-017-1116-4
    [26] Zhu S, Li L, Liu J, et al. Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors[J]. ACS Nano,2018,12:1033-1042. doi: 10.1021/acsnano.7b03431
    [27] Zarshad N, Wu J, Rahman A U, et al. MnO2 nanospheres electrode composed of low crystalline ultra-thin nanosheets for high performance and high rate supercapacitors[J]. Materials Science and Engineering,2020,259:114610. doi: 10.1016/j.mseb.2020.114610
    [28] Pang S C, Anderson M A. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society,2000,147:444-450. doi: 10.1149/1.1393216
    [29] Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials,2004,16:3184-3190. doi: 10.1021/cm049649j
    [30] Kang D N. Synthesis of MnO2 nanoparticle decorated graphene-based porous composite electrodes for high-performance supercapacitors[J]. International Journal of Electrochemical Science,2020,15:6091-6108.
    [31] Li N, Zhu X, Zhang C, et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds,2017,692:26-33. doi: 10.1016/j.jallcom.2016.08.321
    [32] Huang Y, Weng D, Kang S, et al. Controllable synthesis of nanostructured MnO2 as electrode material of supercapacitors[J]. Nanosci Nanotechnol,2020,20:4815-4823.
    [33] Brousse T, Toupin M, Dugas R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society,2006,153(12):A2171-A2180. doi: 10.1149/1.2352197
    [34] Cui P, Zhang Y, Cao Z, et al. Plasma-assisted lattice oxygen vacancies engineering recipe for high-performing supercapacitors in a model of birnessite-MnO2[J]. Chemical Engineering Journal,2021,412(33):128676.
    [35] Zhang Q, Levi M, Dou Q, et al. The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes[J]. Advanced Energy Materials,2018,34:1-10.
    [36] Babu K J, Zahoor A, Nahm K S, et al. The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide[J]. Journal of Nanoparticle Research,2014,16:2250. doi: 10.1007/s11051-014-2250-4
    [37] Zhao S, Liu T, Shi D, et al. Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor[J]. Applied Surface Science,2015,315:862-868.
    [38] Zhang Q Z, Zhang D, Miao Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small,2018,14:1702883. doi: 10.1002/smll.201702883
    [39] Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C,2008,112:4406-4417. doi: 10.1021/jp7108785
    [40] Toupin M, Brousse T, Bélanger D. Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide[J]. Chemistry of Materials,2002,14:3946-3952. doi: 10.1021/cm020408q
    [41] Hu C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition[J]. Electrochimica Acta,2003,47:3523-3532.
    [42] Tanggarnjanavalukul C, Phattharasupakun N, Wutthiprom J, et al. Charge storage mechanisms of birnessite-type MnO2 nanosheets in Na2SO4 electrolytes with different pH values: in situ electrochemical X-ray absorption spectroscopy investigation[J]. Electrochimica Acta,2018,273:17-25. doi: 10.1016/j.electacta.2018.04.022
    [43] Yuan C, Zhang Y, Pan L, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochimica Acta,2014,116:404-412. doi: 10.1016/j.electacta.2013.11.090
    [44] Chen R, Rui L, Huang Y, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science,2016,3(10):1600051. doi: 10.1002/advs.201600051
    [45] An G, Hong J, Pak S, et al. 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors[J]. Advanced Energy Materials,2020,10:1902981. doi: 10.1002/aenm.201902981
    [46] Xu C, Du H, Li B, et al. Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations[J]. Journal of the Electrochemical Society,2009,156:A73-A78. doi: 10.1149/1.3021013
    [47] Xu C, Kang R, Li R, et al. Recent progress on manganese dioxide based supercapacitors[J]. Journal of Materials Research,2010,25:1421-1432. doi: 10.1557/JMR.2010.0211
    [48] Xu C, Wei C, Li B, et al. Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline-earth metal cations[J]. Journal of Power Sources,2011,196:7854-7859. doi: 10.1016/j.jpowsour.2011.04.052
    [49] Song M K, Cheng S, Chen H, et al. Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage[J]. Nano Letters,2012,12:3483-3490. doi: 10.1021/nl300984y
    [50] Jabeen N, Hussain A, Xia Q, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays[J]. Advanced Materials,2017,29:1700804. doi: 10.1002/adma.201700804
    [51] Xiong T, Tan T L, Lu L, et al. Harmonizing energy and power density toward 2.7 V asymmetric aqueous supercapacitor[J]. Advanced Energy Materials,2018,8:1702630. doi: 10.1002/aenm.201702630
    [52] Lee W S V, Xiong T, Loh G C, et al. Optimizing electrolyte physiochemical properties toward 2.8 V aqueous supercapacitor[J]. ACS Applied Energy Materials,2018,1:3070-3076. doi: 10.1021/acsaem.8b00751
    [53] Chen Q, Jin J, Kou Z, et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables Zinc-ion hybrid supercapacitor of battery-level energy density[J]. Small,2020,16:2000091. doi: 10.1002/smll.202000091
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  86
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-08
  • 网络出版日期:  2021-07-07
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回