留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rational design of 3D CNTs/Ti3C2Tx aerogel modified separator as a LiPS regulator for Li–S batteries

YIN Fei JIN Qi ZHANG Xi-tian WU Li-li

YIN Fei, JIN Qi, ZHANG Xi-tian, WU Li-li. Rational design of 3D CNTs/Ti3C2Tx aerogel modified separator as a LiPS regulator for Li–S batteries[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60085-9
Citation: YIN Fei, JIN Qi, ZHANG Xi-tian, WU Li-li. Rational design of 3D CNTs/Ti3C2Tx aerogel modified separator as a LiPS regulator for Li–S batteries[J]. NEW CARBON MATERIALS. doi: 10.1016/S1872-5805(21)60085-9

doi: 10.1016/S1872-5805(21)60085-9

Rational design of 3D CNTs/Ti3C2Tx aerogel modified separator as a LiPS regulator for Li–S batteries

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  SEM images of (a) Ti3C2Tx and (b, c) CNTs/Ti3C2Tx aerogel. (d) N2 adsorption-desorption isotherm curves. (e) Pore size distribution. (f) Electrical conductivities of Ti3C2Tx modified separator and CNTs/Ti3C2Tx aerogel modified separator.

    Figure  2.  (a) TEM images of different areas of the CNTs/Ti3C2Tx aerogel. (b, c) HRTEM images of CNTs/Ti3C2Tx aerogel. (d, e) EDX spectrum and elemental mappings of CNTs/Ti3C2Tx aerogel. (f) XRD patterns.

    Figure  3.  (a) Cycling performances of the cells with CNTs/Ti3C2Tx aerogel modified separators with different CNT content. (b) TG curves of Ti3C2Tx and CNTs/Ti3C2Tx aerogel

    Figure  4.  (a) Digital images of Li2S6 solution after contacting with Ti3C2Tx or CNTs/Ti3C2Tx aerogel for 6 hours, respectively. (b) CV curves of Ti3C2Tx and CNTs/Ti3C2Tx aerogel symmetric cells. Potentiostatic discharge of the Li2S8/TEGDME catholyte on (c) Ti3C2Tx and (d) CNTs/Ti3C2Tx aerogel electrodes at 2.05 V.

    Figure  5.  (a) CV curves of KB/S, KB/S-T and KB/S-CT cells. (b) EIS curves of KB/S, KB/S-T and KB/S-CT cells. (Inset is the equivalent circuit for EIS fitting). (c) EIS fitting results.

    Figure  6.  (a) Cycling performances at 0.1 C. (b) High-plateau discharge capacities (QH) at 0.1 C. (c) Low-plateau discharge capacities (QL) at 0.1 C. (d) Rate performances. (e-g) Rate charge-discharge curves. (h) Cycling performances at 0.5 C.

  • [1] CHEN Xiang, HOU Ting-zheng, PERSSON Kristin A, et al. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives[J]. Materials Today,2019,22:142-158. doi: 10.1016/j.mattod.2018.04.007
    [2] REN Wen-chen, MA Wei, ZHANG Shu-fen, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials,2019,23:707-732. doi: 10.1016/j.ensm.2019.02.022
    [3] ZENG Shuai-bo, LI Li-gui, YU Jing-ping, et al. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium–sulfur Batteries[J]. Electrochimica Acta,2018,263(10):53-59.
    [4] REN Wen-chen, MA Wei, ZHANG Shu-fen, et al. Nitrogen-Doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries[J]. Chemical Engineering Journal,2018,341(1):441-449.
    [5] CHEN Shu-ru, WANG Dai-wei, ZHAO Yu-ming, et al. Superior Performance of a Lithium–Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte[J]. Small Methods,2018,2(6):1800038. doi: 10.1002/smtd.201800038
    [6] CHEN Long, FAN Li-zhen. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials,2018,15:37-45. doi: 10.1016/j.ensm.2018.03.015
    [7] LI Qian, ZENG Fang-lei, GUAN Yue-peng, et al. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium–sulfur Batteries[J]. Energy Storage Materials,2018,13:151-159. doi: 10.1016/j.ensm.2018.01.002
    [8] ZHAO Jie, ZHOU Guang-min, YAN Kai, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology,2017,12:993-999. doi: 10.1038/nnano.2017.129
    [9] HE Yi-bo, QIAO Yu, ZHOU Hao-shen. Recent advances in functional modification of separators in lithium–sulfur batteries[J]. Dalton Transactions,2018,47(20):6881-6887. doi: 10.1039/C7DT04717G
    [10] DENG Nan-ping, KANG Wei-min, LIU Yan-bo, et al. A review on separators for lithium–sulfur battery: Progress and prospects[J]. Journal of Power Sources,2016,331(1):132-155.
    [11] LIAO Hai-yang, ZHANG Hai-yan, HONG Hao-qun, et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2017,257:210-216. doi: 10.1016/j.electacta.2017.10.069
    [12] ZHENG Bang-bei, YU Li-wei, YANG Zhao, et al. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:910-917. doi: 10.1016/j.electacta.2018.11.145
    [13] ZHU Lin, JIANG Hai-tao, YANG Qiu-yue, et al. An Effective Porous Activated Carbon Derived from Puffed Corn Employed as the Separator Coating in a Lithium-Sulfur Battery[J]. Energy Technology,2019,7(11):1900752. doi: 10.1002/ente.201900752
    [14] FENG Gui-lin, LIU Xiao-hong, WU Zhen-guo, et al. Enhancing performance of Li-S batteries by coating separator with MnO@yeast-derived carbon spheres[J]. Journal of Alloys and Compounds,2020,817:152723. doi: 10.1016/j.jallcom.2019.152723
    [15] SHAO Zhi-tao, WU Li-li, YANG Yue, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-226. doi: 10.1016/S1872-5805(21)60015-X
    [16] LI Hai-peng, SUN Lian-cheng, ZHAO Yan, et al. A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries[J]. Applied Surface Science,2019,466(1):309-319.
    [17] FAN Yan-peng, NIU Zhi-hui, ZHANG Fei, et al. Suppressing the Shuttle Effect in Lithium–Sulfur Batteries by a UiO-66-Modified Polypropylene Separator[J]. ACS Omega,2019,4(6):10328-10335. doi: 10.1021/acsomega.9b00884
    [18] JIN Qi, LI Lu, WANG He-ru, et al. Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable lithium–sulfur Batteries[J]. Electrochimica Acta,2019,312(20):149-156.
    [19] JIN Qi, ZHANG Na, ZHU Chun-cheng, et al. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle Lithium-Sulfur Batteries[J]. Nanoscale,2018,10(35):16935-16942. doi: 10.1039/C8NR05749D
    [20] LIANG Xiao, RANGOM Yverick, KWORK Chun-yuen, et al. Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts[J]. Advanced Materials,2017,29(3):1603040. doi: 10.1002/adma.201603040
    [21] BAO Wei-zhai, LIU Liu, WANG Chen-yin, et al. Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries[J]. Advanced Energy Materials,2018,8(13):1702485. doi: 10.1002/aenm.201702485
    [22] LI Juan, JIN Qi, YIN Fei, et al. Effect of Ti3C2Tx-PEDOT: PSS modified-separators on the electrochemical performance of Li-S batteries[J]. RSC Advances,2020,10:40276. doi: 10.1039/D0RA06380K
    [23] YIN Fei, JIN Qi, GAO Hong, et al. A strategy to achieve high loading and high energy density Li-S batteries[J]. Journal of Energy Chemistry,2021,53:340-346. doi: 10.1016/j.jechem.2020.05.014
    [24] LIANG Xiao, GARSUCH Arnd, NAZAR Linda F. Sulfur Cathodes Based on Conductive MXene Nanosheets for High Performance Lithium-Sulfur Batteries[J]. Angewandte Chemie International Edition,2015,127(13):3907-3911.
    [25] WANG Xin-yu, FU Qi-shan, WEN Jing, et al. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors[J]. Nanoscale,2018,10:20828-20835. doi: 10.1039/C8NR06014B
    [26] SONG Jianjun, GUO Xin, ZHANG Jin-qiang, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J
    [27] MENG Qing-he, JIN Qi, WANG He-ru, et al. 3D Ti3C2Tx aerogel-modified separators for high-performance Li–S batteries[J]. Journal of Alloys and Compounds,2020,816:153155. doi: 10.1016/j.jallcom.2019.153155
    [28] SAMBYAL Pradeep, IQBAL Aamir, HONG Junpyo, et al. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces,2019,11(41):38046-38054.
    [29] DING Xiao-hui, LI Chun-hu, LI Ying-chun. Thermal Stability and Photocatalysis of a Novel Two-Dimensional MXene[J]. Hans Journal of Chemical Engineering and Technology,2018,8(5):326-332. doi: 10.12677/HJCET.2018.85042
    [30] CHENG Ya-yi, HUANG Jian-feng, QI Hui, et al. Adjusting the Chemical Bonding of SnO2@CNT Composite for Enhanced Conversion Reaction Kinetics[J]. Small,2017,13(31):1700656. doi: 10.1002/smll.201700656
    [31] WANG Ru-xing, WANG Kang-li, GAO Shu, et al. Rational design of yolk-shell silicon dioxide@hollow carbon spheres as advanced Li-S cathode hosts[J]. Nanoscale,2017,9(39):14881-14887. doi: 10.1039/C7NR04320A
  • 加载中
图(6)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  36
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 修回日期:  2020-01-01
  • 网络出版日期:  2021-07-16

目录

    /

    返回文章
    返回