Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides
-
摘要: 严重的穿梭效应和缓慢的氧化还原动力学导致锂硫电池出现容量衰减快,倍率性能差等问题。为此,以Ti3C2Tx为活性材料、碳纳米管为导电骨架合成出可吸附和催化转化多硫化锂的三维CNT/Ti3C2Tx气凝胶。其独特的三维多孔结构,一方面有效地避免了二维Ti3C2Tx纳米片的重堆叠问题,使更多的活性位点暴露出来,增强对多硫化锂的吸附和催化转化;另一方面提供了大量的电荷传输路径。而且,气凝胶中的碳纳米管既提供了高性能的导电网络,又通过在Ti3C2Tx纳米片之间建立有效连接增强了材料的韧性。将CNT/Ti3C2Tx气凝胶用于修饰锂硫电池隔膜,获得了在电流密度为2 C时电池容量为1043.2 mAh g−1;在电流密度为0.5 C时循环800圈,每圈容量衰减率仅为0.07%的良好性能。Abstract: Lithium–sulfur (Li–S) batteries suffer from fast capacity fade and an inferior rate performance due to the shuttling of polysulfides (LiPSs) and slow redox kinetics. To solve these issues, a three-dimensional (3D) CNT/Ti3C2Tx aerogel was prepared, with Ti3C2Tx as the active matrix and CNTs as the conductive pillars, and used as a LiPS immobilizer and promoter to modify a commercial Li–S battery separator. The unique design of highly porous 3D aerogel results in the exposure of more Ti3C2Tx active sites by preventing the restacking of their sheets, which not only provides abundant charge transport paths, but also strengthens the adsorption and catalytic conversion of LiPSs. The incorporation of CNTs forms a highly conductive network to connect the adjacent Ti3C2Tx sheets, thereby improving the conductivity and robustness of the 3D aerogel. As a result, a Li–S cell using the CNT/ Ti3C2Tx aerogel-modified separator has a high rate capacity of 1 043.2 mAh g−1 up to 2 C and an excellent cycling life of over 800 cycles at 0.5 C with a low capacity decay rate of 0.07% per cycle.
-
Key words:
- CNTs /
- Ti3C2Tx /
- Aerogel /
- Separator /
- Lithium-sulfur batteries
-
Figure 4. (a) Digital images of Li2S6 solution after contacting with Ti3C2Tx or CNT/Ti3C2Tx aerogel for 6 h. (b) CV curves of the Ti3C2Tx and CNT/Ti3C2Tx aerogel symmetric cells. Potentiostatic discharge of the Li2S8/TEGDME catholyte on (c) Ti3C2Tx and (d) the CNT/Ti3C2Tx aerogel electrodes at 2.05 V.
-
[1] Chen X, Hou T Z, Persson K A, et al. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives[J]. Materials Today,2019,22:142-158. doi: 10.1016/j.mattod.2018.04.007 [2] Ren W C, Ma W, Zhang S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials,2019,23:707-732. doi: 10.1016/j.ensm.2019.02.022 [3] Zeng S B, Li L G, Yu J P, et al. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium–sulfur batteries[J]. Electrochimica Acta,2018,263(10):53-59. [4] Ren W C, Ma W, Zhang S F, et al. Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries[J]. Chemical Engineering Journal,2018,341(1):441-449. [5] Chen S R, Wang D W, Zhao Y M, et al. Superior performance of a lithium–sulfur battery enabled by a dimethyl trisulfide containing electrolyte[J]. Small Methods,2018,2(6):1800038. doi: 10.1002/smtd.201800038 [6] Chen L, Fan L Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials,2018,15:37-45. doi: 10.1016/j.ensm.2018.03.015 [7] Li Q, Zeng F L, Guan Y P, et al. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium–sulfur batteries[J]. Energy Storage Materials,2018,13:151-159. doi: 10.1016/j.ensm.2018.01.002 [8] Zhao J, Zhou G M, Yan K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology,2017,12:993-999. doi: 10.1038/nnano.2017.129 [9] He Y B, Qiao Y, Zhou H S. Recent advances in functional modification of separators in lithium–sulfur batteries[J]. Dalton Transactions,2018,47(20):6881-6887. doi: 10.1039/C7DT04717G [10] Deng N P, Kang W M, Liu Y B, et al. A review on separators for lithium–sulfur battery: Progress and prospects[J]. Journal of Power Sources,2016,331(1):132-155. [11] Liao H Y, Zhang H Y, Hong H Q, et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2017,257:210-216. doi: 10.1016/j.electacta.2017.10.069 [12] Zheng B B, Yu L W, Yang Z, et al. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:910-917. doi: 10.1016/j.electacta.2018.11.145 [13] Zhu L, Jiang H T, Yang Q Y, et al. An effective porous activated carbon derived from puffed corn employed as the separator coating in a lithium-sulfur battery[J]. Energy Technology,2019,7(11):1900752. doi: 10.1002/ente.201900752 [14] Feng G L, Liu X H, Wu Z G, et al. Enhancing performance of Li-S batteries by coating separator with MnO@yeast-derived carbon spheres[J]. Journal of Alloys and Compounds,2020,817:152723. doi: 10.1016/j.jallcom.2019.152723 [15] Shao Z T, Wu L L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-226. doi: 10.1016/S1872-5805(21)60015-X [16] Li H P, Sun L C, Zhao Y, et al. A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries[J]. Applied Surface Science,2019,466(1):309-319. [17] Fan Y P, Niu Z H, Zhang F, et al. Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator[J]. ACS Omega,2019,4(6):10328-10335. doi: 10.1021/acsomega.9b00884 [18] Jin Q, Li L, Wang H R, et al. Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable lithium–sulfur batteries[J]. Electrochimica Acta,2019,312(20):149-156. [19] Jin Q, Zhang N, Zhu C C, et al. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle lithium-sulfur batteries[J]. Nanoscale,2018,10(35):16935-16942. doi: 10.1039/C8NR05749D [20] Liang X, Rangom Y, Kwork C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Advanced Materials,2017,29(3):1603040. doi: 10.1002/adma.201603040 [21] Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(13):1702485. doi: 10.1002/aenm.201702485 [22] Li J, Jin Q, Yin F, et al. Effect of Ti3C2Tx-PEDOT: PSS modified-separators on the electrochemical performance of Li-S batteries[J]. RSC Advances,2020,10:40276. doi: 10.1039/D0RA06380K [23] Yin F, Jin Q, Gao H, et al. A strategy to achieve high loading and high energy density Li-S batteries[J]. Journal of Energy Chemistry,2021,53:340-346. doi: 10.1016/j.jechem.2020.05.014 [24] Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2015,127(13):3907-3911. [25] Wang X Y, Fu Q S, Wen J, et al. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors[J]. Nanoscale,2018,10:20828-20835. doi: 10.1039/C8NR06014B [26] Song J J, Guo X, Zhang J Q, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J [27] Meng Q H, Jin Q, Wang H R, et al. 3D Ti3C2Tx aerogel-modified separators for high-performance Li–S batteries[J]. Journal of Alloys and Compounds,2020,816:153155. doi: 10.1016/j.jallcom.2019.153155 [28] Sambyal P, Iqbal A, Hong J, et al. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2019,11(41):38046-38054. [29] Ding X H, Li C H, Li Y C. Thermal stability and photocatalysis of a novel two-dimensional MXene[J]. Hans Journal of Chemical Engineering and Technology,2018,8(5):326-332. doi: 10.12677/HJCET.2018.85042 [30] Cheng Y Y, Huang J F, Qi H, et al. Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics[J]. Small,2017,13(31):1700656. doi: 10.1002/smll.201700656 [31] Wang R X, Wang K L, Gao S, et al. Rational design of yolk-shell silicon dioxide@hollow carbon spheres as advanced Li-S cathode hosts[J]. Nanoscale,2017,9(39):14881-14887. doi: 10.1039/C7NR04320A -