留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides

YIN Fei JIN Qi ZHANG Xi-tian WU Li-li

尹菲, 金奇, 张喜田, 武立立. 设计合成三维CNT/Ti3C2Tx气凝胶隔膜修饰层用于锂硫电池中多硫化锂的吸附和催化转化. 新型炭材料, 2022, 37(4): 724-733. doi: 10.1016/S1872-5805(21)60085-9
引用本文: 尹菲, 金奇, 张喜田, 武立立. 设计合成三维CNT/Ti3C2Tx气凝胶隔膜修饰层用于锂硫电池中多硫化锂的吸附和催化转化. 新型炭材料, 2022, 37(4): 724-733. doi: 10.1016/S1872-5805(21)60085-9
YIN Fei, JIN Qi, ZHANG Xi-tian, WU Li-li. Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides. New Carbon Mater., 2022, 37(4): 724-733. doi: 10.1016/S1872-5805(21)60085-9
Citation: YIN Fei, JIN Qi, ZHANG Xi-tian, WU Li-li. Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides. New Carbon Mater., 2022, 37(4): 724-733. doi: 10.1016/S1872-5805(21)60085-9

设计合成三维CNT/Ti3C2Tx气凝胶隔膜修饰层用于锂硫电池中多硫化锂的吸附和催化转化

doi: 10.1016/S1872-5805(21)60085-9
基金项目: 国家自然科学基金(11504097,51772069)
详细信息
    通讯作者:

    张喜田,博士,教授. E-mail:xtzhangzhang@hotmail.com

    武立立,博士,教授. E-mail:wll790107@hotmail.com

  • 中图分类号: TB33

Design of a 3D CNT/Ti3C2Tx aerogel-modified separator for Li–S batteries to eliminate both the shuttle effect and slow redox kinetics of polysulfides

More Information
  • 摘要: 严重的穿梭效应和缓慢的氧化还原动力学导致锂硫电池出现容量衰减快,倍率性能差等问题。为此,以Ti3C2Tx为活性材料、碳纳米管为导电骨架合成出可吸附和催化转化多硫化锂的三维CNT/Ti3C2Tx气凝胶。其独特的三维多孔结构,一方面有效地避免了二维Ti3C2Tx纳米片的重堆叠问题,使更多的活性位点暴露出来,增强对多硫化锂的吸附和催化转化;另一方面提供了大量的电荷传输路径。而且,气凝胶中的碳纳米管既提供了高性能的导电网络,又通过在Ti3C2Tx纳米片之间建立有效连接增强了材料的韧性。将CNT/Ti3C2Tx气凝胶用于修饰锂硫电池隔膜,获得了在电流密度为2 C时电池容量为1043.2 mAh g−1;在电流密度为0.5 C时循环800圈,每圈容量衰减率仅为0.07%的良好性能。
  • FIG. 1656.  FIG. 1656.

    FIG. 1656..  FIG. 1656.

    Figure  1.  SEM images of (a) Ti3C2Tx and (b, c) CNT/Ti3C2Tx aerogel. (d) N2 adsorption-desorption isotherms. (e) Pore size distributions. (f) Electrical conductivities of the Ti3C2Tx modified separator and CNT/Ti3C2Tx aerogel modified separator.

    Figure  2.  (a) TEM images of different areas of the CNT/Ti3C2Tx aerogel. (b, c) HRTEM images of the CNT/Ti3C2Tx aerogel. (d, e) EDX spectrum and elemental mappings of the CNT/Ti3C2Tx aerogel. (f) XRD patterns.

    Figure  3.  (a) Cycling performance of the cells with CNT/Ti3C2Tx aerogel modified separators with different CNT contents. (b) TG curves of Ti3C2Tx and the CNT/Ti3C2Tx aerogel

    Figure  4.  (a) Digital images of Li2S6 solution after contacting with Ti3C2Tx or CNT/Ti3C2Tx aerogel for 6 h. (b) CV curves of the Ti3C2Tx and CNT/Ti3C2Tx aerogel symmetric cells. Potentiostatic discharge of the Li2S8/TEGDME catholyte on (c) Ti3C2Tx and (d) the CNT/Ti3C2Tx aerogel electrodes at 2.05 V.

    Figure  5.  (a) CV curves of the KB/S, KB/S-T and KB/S-CT cells. (b) EIS curves of the KB/S, KB/S-T and KB/S-CT cells. (Inset is the equivalent circuit for EIS fitting). (c) EIS fitting results.

    Figure  6.  (a) Cycling performance at 0.1 C. (b) High-plateau discharge capacities (QH) at 0.1 C. (c) Low-plateau discharge capacities (QL) at 0.1 C. (d) Rate performance. (e-g) Rate charge-discharge curves. (h) Cycling performance at 0.5 C.

  • [1] Chen X, Hou T Z, Persson K A, et al. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives[J]. Materials Today,2019,22:142-158. doi: 10.1016/j.mattod.2018.04.007
    [2] Ren W C, Ma W, Zhang S F, et al. Recent advances in shuttle effect inhibition for lithium sulfur batteries[J]. Energy Storage Materials,2019,23:707-732. doi: 10.1016/j.ensm.2019.02.022
    [3] Zeng S B, Li L G, Yu J P, et al. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium–sulfur batteries[J]. Electrochimica Acta,2018,263(10):53-59.
    [4] Ren W C, Ma W, Zhang S F, et al. Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries[J]. Chemical Engineering Journal,2018,341(1):441-449.
    [5] Chen S R, Wang D W, Zhao Y M, et al. Superior performance of a lithium–sulfur battery enabled by a dimethyl trisulfide containing electrolyte[J]. Small Methods,2018,2(6):1800038. doi: 10.1002/smtd.201800038
    [6] Chen L, Fan L Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials,2018,15:37-45. doi: 10.1016/j.ensm.2018.03.015
    [7] Li Q, Zeng F L, Guan Y P, et al. Poly (dimethylsiloxane) modified lithium anode for enhanced performance of lithium–sulfur batteries[J]. Energy Storage Materials,2018,13:151-159. doi: 10.1016/j.ensm.2018.01.002
    [8] Zhao J, Zhou G M, Yan K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology,2017,12:993-999. doi: 10.1038/nnano.2017.129
    [9] He Y B, Qiao Y, Zhou H S. Recent advances in functional modification of separators in lithium–sulfur batteries[J]. Dalton Transactions,2018,47(20):6881-6887. doi: 10.1039/C7DT04717G
    [10] Deng N P, Kang W M, Liu Y B, et al. A review on separators for lithium–sulfur battery: Progress and prospects[J]. Journal of Power Sources,2016,331(1):132-155.
    [11] Liao H Y, Zhang H Y, Hong H Q, et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2017,257:210-216. doi: 10.1016/j.electacta.2017.10.069
    [12] Zheng B B, Yu L W, Yang Z, et al. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:910-917. doi: 10.1016/j.electacta.2018.11.145
    [13] Zhu L, Jiang H T, Yang Q Y, et al. An effective porous activated carbon derived from puffed corn employed as the separator coating in a lithium-sulfur battery[J]. Energy Technology,2019,7(11):1900752. doi: 10.1002/ente.201900752
    [14] Feng G L, Liu X H, Wu Z G, et al. Enhancing performance of Li-S batteries by coating separator with MnO@yeast-derived carbon spheres[J]. Journal of Alloys and Compounds,2020,817:152723. doi: 10.1016/j.jallcom.2019.152723
    [15] Shao Z T, Wu L L, Yang Y, et al. Carbon nanotube-supported MoSe2 nanoflakes as an interlayer for lithium-sulfur batteries[J]. New Carbon Materials,2021,36(1):219-226. doi: 10.1016/S1872-5805(21)60015-X
    [16] Li H P, Sun L C, Zhao Y, et al. A novel CuS/graphene-coated separator for suppressing the shuttle effect of lithium/sulfur batteries[J]. Applied Surface Science,2019,466(1):309-319.
    [17] Fan Y P, Niu Z H, Zhang F, et al. Suppressing the shuttle effect in lithium–sulfur batteries by a UiO-66-modified polypropylene separator[J]. ACS Omega,2019,4(6):10328-10335. doi: 10.1021/acsomega.9b00884
    [18] Jin Q, Li L, Wang H R, et al. Dual effects of the carbon fibers/Ti3C2Tx interlayer on retarding shuttle of polysulfides for stable lithium–sulfur batteries[J]. Electrochimica Acta,2019,312(20):149-156.
    [19] Jin Q, Zhang N, Zhu C C, et al. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle lithium-sulfur batteries[J]. Nanoscale,2018,10(35):16935-16942. doi: 10.1039/C8NR05749D
    [20] Liang X, Rangom Y, Kwork C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Advanced Materials,2017,29(3):1603040. doi: 10.1002/adma.201603040
    [21] Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(13):1702485. doi: 10.1002/aenm.201702485
    [22] Li J, Jin Q, Yin F, et al. Effect of Ti3C2Tx-PEDOT: PSS modified-separators on the electrochemical performance of Li-S batteries[J]. RSC Advances,2020,10:40276. doi: 10.1039/D0RA06380K
    [23] Yin F, Jin Q, Gao H, et al. A strategy to achieve high loading and high energy density Li-S batteries[J]. Journal of Energy Chemistry,2021,53:340-346. doi: 10.1016/j.jechem.2020.05.014
    [24] Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition,2015,127(13):3907-3911.
    [25] Wang X Y, Fu Q S, Wen J, et al. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors[J]. Nanoscale,2018,10:20828-20835. doi: 10.1039/C8NR06014B
    [26] Song J J, Guo X, Zhang J Q, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J
    [27] Meng Q H, Jin Q, Wang H R, et al. 3D Ti3C2Tx aerogel-modified separators for high-performance Li–S batteries[J]. Journal of Alloys and Compounds,2020,816:153155. doi: 10.1016/j.jallcom.2019.153155
    [28] Sambyal P, Iqbal A, Hong J, et al. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2019,11(41):38046-38054.
    [29] Ding X H, Li C H, Li Y C. Thermal stability and photocatalysis of a novel two-dimensional MXene[J]. Hans Journal of Chemical Engineering and Technology,2018,8(5):326-332. doi: 10.12677/HJCET.2018.85042
    [30] Cheng Y Y, Huang J F, Qi H, et al. Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics[J]. Small,2017,13(31):1700656. doi: 10.1002/smll.201700656
    [31] Wang R X, Wang K L, Gao S, et al. Rational design of yolk-shell silicon dioxide@hollow carbon spheres as advanced Li-S cathode hosts[J]. Nanoscale,2017,9(39):14881-14887. doi: 10.1039/C7NR04320A
  • 加载中
图(7)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  110
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回