留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A mini review: application of graphene paper in thermal interface materials

LU Le DAI Wen YU Jin-hong JIANG Nan LIN Cheng-te

吕乐, 代文, 虞锦洪, 江南, 林正得. 石墨烯纸在热界面材料中的应用. 新型炭材料, 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8
引用本文: 吕乐, 代文, 虞锦洪, 江南, 林正得. 石墨烯纸在热界面材料中的应用. 新型炭材料, 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8
LU Le, DAI Wen, YU Jin-hong, JIANG Nan, LIN Cheng-te. A mini review: application of graphene paper in thermal interface materials. New Carbon Mater., 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8
Citation: LU Le, DAI Wen, YU Jin-hong, JIANG Nan, LIN Cheng-te. A mini review: application of graphene paper in thermal interface materials. New Carbon Mater., 2021, 36(5): 930-939. doi: 10.1016/S1872-5805(21)60093-8

石墨烯纸在热界面材料中的应用

doi: 10.1016/S1872-5805(21)60093-8
基金项目: 国家重点研发计划(2017YFB0406000)、中国科学院项目(XDC07030100、XDA22020602、KFZD-SW-409、ZDKYYQ20200001、ZDRW19-CN-20)、中国科学院青年创新促进会(2020301)、宁波市科技重大专项(2018B10046、2016S1002)、宁波市自然科学基金(2017A610010)、固体润滑国家重点实验室基金(LSL-1912)、国家重点实验室特殊环境下先进复合材料科学与技术(6142905192806)、王宽诚教育基金(GJTD-2019-13)、中国博士后科学基金(2020M681965)、宁波市3315计划
详细信息
    通讯作者:

    代 文,博士,助理研究员. E-mail:daiwen@nimte.ac.cn

    江 南,博士,研究员. E-mail:jiangnan@nimte.ac.cn

    林正得,博士,研究员. E-mail:linzhengde@nimte.ac.cn

  • 中图分类号: TQ127.1+1

A mini review: application of graphene paper in thermal interface materials

More Information
  • 摘要: 热量累积问题是当前电子产品升级需要解决的首要问题,迫切需要具有优异散热性能的高性能热界面材料。基于热界面材料的发展现状,具有超薄和高垂直热导率的石墨烯纸显示出巨大的潜力。从这个角度,我们介绍了石墨烯/聚合物复合纸、石墨烯/金属复合纸、石墨烯/陶瓷复合纸和石墨烯/碳材料复合纸四种类型杂化石墨烯纸以及垂直排列的石墨烯纸结构。从热界面材料的应用角度,讨论了不同石墨烯纸的优点和局限性,提出了进一步的研究前景,以促进石墨烯纸基热界面材料的实际应用。
  • FIG. 900.  FIG. 900.

    FIG. 900.. 

    Figure  1.  (a) Schematic diagram of a typical ball grid array electronic package (b) Schematic diagram of a TIM filling the air gap between the heater and mating interface of the heat sink. Reprinted with permission from: (a, b) Reference[3], Copyright 2018, MDPI.

    Figure  2.  Manufacturing method and corresponding structure of the polymer to improve the through-plane thermal conductivity of graphene paper: (a) natural rubber, (b) P(VBcoVA-co-VAc), and (c) polydopamine. Reprinted with permission from: (a) Reference[30], Copyright 2019, American Chemical Society; (b) Reference[31], Copyright 2019, Elsevier; and (c) Reference[33], Copyright 2018, Royal Society of Chemistry.

    Figure  3.  (a) Schematic of the fabrication procedure of rGO/AgNWs-PVDF nanocomposites, (b) Schematic of the manufacturing process of graphene-Cu/CFRC. Reprinted with permission from: (a) Reference[35], Copyright 2020, American Chemical Society and (b) Reference[36], Copyright 2019, Elsevier.

    Figure  4.  (a) Schematic of the fabrication process and photograph of silicon carbide/graphene hybrid paper, (b) Morphology and through-plane thermal conductivity of graphene hybrid paper with different thermally conductive structures. Reprinted with permission from: (a) Reference[13], Copyright 2019, American Chemical Society and (b) Reference[43], Copyright 2020, Elsevier.

    Figure  5.  (a) Schematic assembly of the hierarchical chiral architecture of the graphene-based composite film, (b) Pillared-graphene-CNTs network structure model, (c) Molecular structure of the optimized junction of carbon nanorings and graphene sheets, (d) Schematic illustrating the fabrication process of hierarchically structured graphene paper. Reprinted with permission from: (a) Reference[47], Copyright 2018, American Chemical Society; (b) Reference[48], Copyright 2008, American Chemical Society; (c) Reference[49], Copyright 2018, American Chemical Society and (d) Reference[50], Copyright 2021, Elsevier.

    Figure  6.  (a) Schematic illustrating the assembly of vertically aligned graphene monolith via “rotating-reassembling” as-prepared graphene paper, (b) Schematic of the fabrication procedure of the vertically aligned graphene paper/PDMS composite, (c) Schematic illustrating the fabrication process of vertically aligned graphene framework, (d) Schematic illustrating the structural change of the graphene based on the proposed method. Reprinted with permission from: (a) Reference[51], Copyright 2011, American Chemical Society; (b) Reference[52], Copyright 2016, Elsevier; (c) Reference[7], Copyright 2021, Elsevier and (d) Reference[4], Copyright 2019, American Chemical Society.

    Table  1.   The summary of through-plane thermal conductivity with reported graphene-based papers prepared using various methods.

    Interlayers/ProcessingThrough-plane thermal conductivity
    (W m−1 K−1)
    Rcontact
    (K mm2 W−1)
    MethodRefs.
    Polymer
    Nature rubber0.6Casting-drying[30]
    Epoxy0.8Directional freezing[32]
    Naphthalenesulfonate0.6Layer-by-layer stacking[53]
    Cellulose nanofiber5.0Filtration[33]
    PVDF0.7Solution casting[54]
    Metal
    Au nanoparticles1.6In-situ growth[29]
    Ag nanoparticles3.3Casting-drying[34]
    rGO/AgNW composites2.6Hydrothermal[35]
    Copper particles5.7Hot-pressing[36]
    Ceramic particles
    BN nanotubes3.1Hot-pressing[55]
    SiC nanowires17.647In-situ growth[13]
    SiC nanowires0.2Surface functionalization[42]
    Al2O39.1Hot-pressing[43]
    Low-dimensional carbon materials
    Carbon fiber0.4Hot-pressing[45]
    Cellulose nanocrystals4.6Evaporation[47]
    Carbon nanoring5.8CVD growth[49]
    Nanodiamond0.3Filtration[44]
    CNTs0.1Hot-pressing[56]
    CNTs0.2Filtration[57]
    Carbon spheres1.3Hydro-thermal[58]
    Carbon fiber8.0[59]
    Graphene12.6Filtration[50]
    Vertically aligned graphene paper
    Stacking75.55.1Coating[51]
    Rolling with PDMS614.85Coating[52]
    Rolling with PU27641Coating[7]
    Wrinkling1435.8Filtration[4]
    下载: 导出CSV
  • [1] Suh D, Moon C M, Kim D, et al. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits[J]. Advanced Materials,2016,28(33):7220-7227. doi: 10.1002/adma.201600642
    [2] Bhanushali S, Ghosh P C, Simon G P, et al. Copper nanowire-filled soft elastomer composites for applications as thermal interface materials[J]. Advanced Materials Interfaces,2017,4(17):1700387. doi: 10.1002/admi.201700387
    [3] Lv L, Dai W, Li A J, et al. Graphene-based thermal interface materials: an application-oriented perspective on architecture design[J]. Polymers,2018,10(11):1201. doi: 10.3390/polym10111201
    [4] Dai W, Ma T F, Yan Q W, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano,2019,13(10):11561-11571. doi: 10.1021/acsnano.9b05163
    [5] Hansson J, Nilsson T M J, Ye L L, et al. Novel nanostructured thermal interface materials: a review[J]. International Materials Reviews,2018,63(1):22-45. doi: 10.1080/09506608.2017.1301014
    [6] Razeeb K M, Dalton E, Cross G L W, et al. Present and future thermal interface materials for electronic devices[J]. International Materials Reviews,2017,63(1):1-21. doi: 10.1080/09506608.2017.1296605
    [7] Tan X, Ying J F, Gao J Y, et al. Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture[J]. Composites Communications,2021,24:100621. doi: 10.1016/j.coco.2020.100621
    [8] Prasher R. Thermal interface materials: historical perspective, status, and future directions[J]. Proceedings of the IEEE,2006,94(8):1571-1586. doi: 10.1109/JPROC.2006.879796
    [9] Shahil K M, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [10] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letter,2008,8(3):902-907. doi: 10.1021/nl0731872
    [11] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [12] Sun H Y, Li X M, Li Y C, et al. High-quality monolithic graphene films via laterally stitched growth and structural repair of isolated flakes for transparent electronics[J]. Chemistry of Materials,2017,29(18):7808-7815. doi: 10.1021/acs.chemmater.7b02348
    [13] Dai W, Lv L, Lu J B, et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods[J]. ACS Nano,2019,13(2):1547-1554. doi: 10.1021/acsnano.8b07337
    [14] Dai W, Lv L, Ma T F, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Advanced Science,2021,8(7):2003734. doi: 10.1002/advs.202003734
    [15] Hopkins P E, Baraket M, Barnat E V, et al. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization[J]. Nano Letters,2012,12(2):590-595. doi: 10.1021/nl203060j
    [16] Majumdar A, Reddy P. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces[J]. Applied Physics Letters,2004,84(23):4768-4770. doi: 10.1063/1.1758301
    [17] Teng C, Xie D, Wang J F, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [18] Zhang J W, Shi G, Jiang C, et al. 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small,2015,11(46):6109-6109. doi: 10.1002/smll.201570274
    [19] Fu Y, Hansson J, Liu Y, et al. Graphene related materials for thermal management[J]. 2D Materials,2020,7:012001. doi: 10.1088/2053-1583/ab48d9
    [20] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [21] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457-460. doi: 10.1038/nature06016
    [22] Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [23] Wallace G G, MB Müller, Dan L, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Advanced Materials,2010,20(18):3557-3561. doi: 10.1002/adma.200800757
    [24] Liu Z, Li Z, Xu Z, et al. Wet-spun continuous graphene films[J]. Chemistry of Materials,2014,26(23):6786-6795. doi: 10.1021/cm5033089
    [25] Li J, Ye F, Vaziri S, et al. Efficient inkjet printing of graphene[J]. Advanced Materials,2013,25(29):3985-3992. doi: 10.1002/adma.201300361
    [26] Wang X, Zhi L, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J]. Nano Letters,2008,8(1):323-327. doi: 10.1021/nl072838r
    [27] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano,2008,2(3):463-470. doi: 10.1021/nn700375n
    [28] Rubén R, Juan I P, Silvia V R, et al. Towards full repair of defects in reduced graphene oxide films by two-step graphitization[J]. Nano Research,2013,6:216-233. doi: 10.1007/s12274-013-0298-6
    [29] Xiang J, Drzal L T. Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper[J]. ACS Applied Materials & Interfaces,2011,3(4):1325-1332. doi: 10.1021/am200126x
    [30] Feng C P, Chen L B, Tian G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials & Interfaces,2019,11(20):18739-18745. doi: 10.1021/acsami.9b03885
    [31] Jeon D, Kim S H, Choi W, et al. An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials[J]. International Journal of Heat and Mass Transfer,2019,132(4):944-951. doi: 10.1016/j.ijheatmasstransfer.2018.12.061
    [32] Wang Y, Zhang Z, Li T, et al. Artificial nacre epoxy nanomaterials based on janus graphene oxide for thermal management applications[J]. ACS Applied Materials & Interfaces,2020,12(39):44273-44280. doi: 10.1021/acsami.0c11062
    [33] Chen Y P, Xiao H, Kang R Y, et al. Highly flexible biodegradable cellulose nanofiber/graphene heat spreader films with improved mechanical property and enhanced thermal conductivity[J]. Journal of Materials Chemistry C,2018,6(46):12739-12745. doi: 10.1039/C8TC04859B
    [34] Huang S Y, Zhang K, Yuen M, et al. Facile synthesis of flexible graphene–silver composite papers with promising electrical and thermal conductivity performances[J]. Rsc Advances,2014,4(64):34156-34160. doi: 10.1039/C4RA05176A
    [35] Li Y, Li X, Alam M M et al. Incorporating Ag nanowires into graphene nanosheets for enhanced thermal conductivity: implications for thermal management[J]. ACS Applied Nano Materials,2020,3(6):6061-6070. doi: 10.1021/acsanm.0c01265
    [36] Lee E, Son I, Lee J H. Starfish surface-inspired graphene-copper metaparticles for ultrahigh vertical thermal conductivity of carbon fiber composite[J]. Composites Science and Technology,2020,199:108385. doi: 10.1016/j.compscitech.2020.108385
    [37] Hou X, Chen Y, Lv L, et al. High-thermal-transport-channel construction within flexible composites via the welding of boron nitride nanosheets[J]. ACS Applied Nano Materials,2019,2(1):360-368. doi: 10.1021/acsanm.8b01939
    [38] Li M, Wang M J, Hou X, et al. Highly thermal conductive and electrical insulating polymer composites with boron nitride[J]. Composites Part B-Engineering,2020,184:107746. doi: 10.1016/j.compositesb.2020.107746
    [39] Dai W, Yu J H, Wang Y, et al. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler[J]. Journal of Materials Chemistry A,2015,3(9):4884-4891. doi: 10.1039/C4TA06417H
    [40] Chen Y P, Hou X, Liao M Z, et al. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite[J]. Chemical Engineering Journal,2020,381:122690. doi: 10.1016/j.cej.2019.122690
    [41] Wu Y M, Ye K, Liu Z D, et al. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces,2019,11(47):44700-44707. doi: 10.1021/acsami.9b15758
    [42] Wang Z G, Yang Y L, Lan R T, et al. Significantly enhanced thermal conductivity and flame retardance by silicon carbide nanowires/graphene oxide hybrid network[J]. Composites Part A: Applied Science and Manufacturing,2020,139:106093. doi: 10.1016/j.compositesa.2020.106093
    [43] Feng C P, Chen L B, Tian G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 Wm−1K−1[J]. Chemical Engineering Journal,2020,392:123784. doi: 10.1016/j.cej.2019.123784
    [44] Nan B, Wu K, Qu Z, et al. A multifunctional thermal management paper based on functionalized graphene oxide nanosheets decorated with nanodiamond[J]. Carbon,2020,161:132-145. doi: 10.1016/j.carbon.2020.01.056
    [45] Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanc ed Functional Materials,2014,24(27):4222-4228. doi: 10.1002/adfm.201304144
    [46] Zou R, Liu F, Hu N, et al. 1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility[J]. Nanotechnology,2020,31(6):065602. doi: 10.1088/1361-6528/ab51c5
    [47] Meng X, Pan H, Zhu C, et al. Coupled chiral structure in graphene-based film for ultrahigh thermal conductivity in both in-plane and through-plane directions[J]. ACS Applied Materials & Interfaces,2018,10(26):22611-22622. doi: 10.1021/acsami.8b05514
    [48] Dimitrakakis G K, Tylianakis E, Froudakis G E. Pillared graphene: a new 3D network nanostructure for enhanced hydrogen storage[J]. Nano Letters,2008,8(10):3166-3170. doi: 10.1021/nl801417w
    [49] Zhang J, Shi G, Jiang C, et al. Carbon Nanorings: 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader[J]. Small,2015,11(46):6197-6204. doi: 10.1002/smll.201501878
    [50] Gao J Y, Yan Q W, Lv L, et al. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity[J]. Chemical Engineering Journal,2021,419:129609. doi: 10.1016/j.cej.2021.129609
    [51] Liang Q, Yao X, Wang W, et al. A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials[J]. ACS Nano,2011,5:2392-2401. doi: 10.1021/nn200181e
    [52] Zhang Y F, D Han, Zhao Y H, et al. High-performance thermal interface materials consisting of vertically aligned graphene film and polymer[J]. Carbon,2016,109:552-557. doi: 10.1016/j.carbon.2016.08.051
    [53] Zhuang Y, Zheng K, Cao X, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology[J]. ACS Nano,2020,14:11733-11742. doi: 10.1021/acsnano.0c04456
    [54] Song Q, Zhu W, Deng Y, et al. Enhanced thermal conductivity and mechanical property of flexible poly (vinylidene fluoride)/boron nitride/graphite nanoplatelets insulation films with high breakdown strength and reliability[J]. Composites Science and Technology,2018,168:381-387. doi: 10.1016/j.compscitech.2018.10.015
    [55] Li X, Li Y, Alam M M, et al. Enhanced through-plane thermal conductivity in polymer nanocomposites by constructing graphene-supported BN nanotubes[J]. Journal of Materials Chemistry C,2020,8(28):9569-9575. doi: 10.1039/D0TC01871F
    [56] Pan T-W, Kuo W-S, Tai N-H. Tailoring anisotropic thermal properties of reduced graphene oxide/multi-walled carbon nanotube hybrid composite films[J]. Composites Science and Technology,2017,151:44-51. doi: 10.1016/j.compscitech.2017.07.015
    [57] Lu H F, Zhang J, Luo J, et al. Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper[J]. Composites Part A: Applied Science and Manufacturing,2017,102:1-8. doi: 10.1016/j.compositesa.2017.07.021
    [58] Li Q, Tian X, Wu N, et al. Enhanced thermal conductivity and isotropy of polymer composites by fabricating 3D network structure from carbon‐based materials[J]. Journal of Applied Polymer Science,2020,138(5):49781. doi: 10.1002/app.49781
    [59] Macpool M, Guo H C, Bashir A, et al. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface[J]. Nano Research,2020,13(10):2741-2748. doi: 10.1007/s12274-020-2921-7
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1159
  • HTML全文浏览量:  632
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-09-13
  • 网络出版日期:  2021-09-30
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回