张思雨, 李跃然, 邢涛, 刘海燕, 刘昭斌, 李忠涛, 吴明铂. 聚阴离子化合物在固态电解质中的应用研究进展[J]. 新型炭材料, 2022, 37(2): 358-370. DOI: 10.1016/S1872-5805(22)60588-2
引用本文: 张思雨, 李跃然, 邢涛, 刘海燕, 刘昭斌, 李忠涛, 吴明铂. 聚阴离子化合物在固态电解质中的应用研究进展[J]. 新型炭材料, 2022, 37(2): 358-370. DOI: 10.1016/S1872-5805(22)60588-2
ZHANG Si-yu, LI Yue-ran, XING Tao, LIU Hai-yan, LIU Zhao-bin, LI Zhong-tao, WU Ming-bo. Recent progress in the use of polyanions as solid electrolytes[J]. New Carbon Mater., 2022, 37(2): 358-370. DOI: 10.1016/S1872-5805(22)60588-2
Citation: ZHANG Si-yu, LI Yue-ran, XING Tao, LIU Hai-yan, LIU Zhao-bin, LI Zhong-tao, WU Ming-bo. Recent progress in the use of polyanions as solid electrolytes[J]. New Carbon Mater., 2022, 37(2): 358-370. DOI: 10.1016/S1872-5805(22)60588-2

聚阴离子化合物在固态电解质中的应用研究进展

Recent progress in the use of polyanions as solid electrolytes

  • 摘要: 固态电解质是全固态锂电池的关键组分,其室温离子电导率和可加工性是影响电解质性能的关键指标。聚阴离子型固态电解质具有较高的锂离子迁移率,与其它类型陶瓷电解质相比,该电解质对水氧不敏感、成本低廉且原料无毒等特殊优点,明显降低了后期产业化的难度。本文首先总结了聚阴离子型固态电解质的分类和离子传输机制,然后介绍了提高材料本体锂离子传输性的原理和方法,最后介绍了通过表面修饰和复合改性提高电解质界面稳定性和可加工性方面的进展。结合全固态电池产业化对电解质膜片的需求,探索了目前聚阴离子型固态电池存在的问题和未来发展方向。作为一种具有优异的水氧稳定性和高离子电导率的电解质材料,聚阴离子电解质在下一代全固态电池中有着巨大的应用潜力。

     

    Abstract: Due to the urgent need for high-safety and high-energy density energy storage devices, all-solid-state lithium batteries have become a current research focus, with a solid electrolyte being a key component that determines their performance. Compared with other solid electrolytes, polyanions have a unique three-dimensional open framework for conducting lithium ions and an ultra-stability to water and oxygen, which gives them many potential applications. However, their poor room temperature ionic conductivity, the unstable interfacial structure of the electrode/electrolyte and their processability has hindered practical applications. To address these issues, recent progress in using polyanions as solid electrolytes is reviewed. First, ion transport mechanisms within polyanionic crystals and in the electrode/electrolyte interlayer are elaborated. Then, the principles and methods to improve lithium-ion transport in polyanionic electrolytes are summarized, and various surface modification methods to improve the stability and processability of the electrode/electrolyte interfaces are discussed. Finally, the processing and equipment that need to be developed and improved for all-solid-state battery fabrication are outlined, and developing trends to achieve the practical use of polyanions in all-solid-state batteries are discussed.

     

/

返回文章
返回