-
摘要: 固态电解质是全固态锂电池的关键组分,其室温离子电导率和可加工性是影响电解质性能的关键指标。聚阴离子型固态电解质具有较高的锂离子迁移率,与其它类型陶瓷电解质相比,该电解质对水氧不敏感、成本低廉且原料无毒等特殊优点,明显降低了后期产业化的难度。本文首先总结了聚阴离子型固态电解质的分类和离子传输机制,然后介绍了提高材料本体锂离子传输性的原理和方法,最后介绍了通过表面修饰和复合改性提高电解质界面稳定性和可加工性方面的进展。结合全固态电池产业化对电解质膜片的需求,探索了目前聚阴离子型固态电池存在的问题和未来发展方向。作为一种具有优异的水氧稳定性和高离子电导率的电解质材料,聚阴离子电解质在下一代全固态电池中有着巨大的应用潜力。Abstract: Due to the urgent need for high-safety and high-energy density energy storage devices, all-solid-state lithium batteries have become a current research focus, with a solid electrolyte being a key component that determines their performance. Compared with other solid electrolytes, polyanions have a unique three-dimensional open framework for conducting lithium ions and an ultra-stability to water and oxygen, which gives them many potential applications. However, their poor room temperature ionic conductivity, the unstable interfacial structure of the electrode/electrolyte and their processability has hindered practical applications. To address these issues, recent progress in using polyanions as solid electrolytes is reviewed. First, ion transport mechanisms within polyanionic crystals and in the electrode/electrolyte interlayer are elaborated. Then, the principles and methods to improve lithium-ion transport in polyanionic electrolytes are summarized, and various surface modification methods to improve the stability and processability of the electrode/electrolyte interfaces are discussed. Finally, the processing and equipment that need to be developed and improved for all-solid-state battery fabrication are outlined, and developing trends to achieve the practical use of polyanions in all-solid-state batteries are discussed.
-
Key words:
- Polyanions /
- Solid electrolyte /
- Interface layer /
- Composite electrolyte /
- Element doping
-
图 3 LiTi2(PO4)3、Li1.3Ti1.7M0.33+(PO4)3、LiTi1.7M0.34+(PO4)3和Li0.7Ti1.7M0.35+(PO4)3在30 ℃下的(a)体电导、(b)离子迁移的活化能和(c)晶胞体积[40]
Figure 3. (a) The volume conductance at 30 ℃, (b) the activation energy of ion migration and (c) the unit cell volume of LiTi2(PO4)3, Li1.3Ti1.7M0.33+(PO4)3, LiTi1.7M0.34+(PO4)3 and Li0.7Ti1.7M0.35+(PO4)3[40]. Reprinted with permission.
图 5 (a)Al(C3H7O)3和(b)Al(NO3)3中提取烧结球团的Arrhenius图,(c)陶瓷中Li离子传导的示意图[59],(d, e)AlOOH样品的SEM照片[57],(f)LAGP试样和(g)LAGP 20%L试样晶界特性示意图[60]
Figure 5. Arrhenius diagram of sintered pellets extracted from (a) Al(C3H7O)3 and (b) Al(NO3)3. (c) Schematic diagram of Li ion conduction in ceramics[59]. (d, e) SEM image of AlOOH sample[57]. Grain boundary characteristics of (f) LAGP and (g) LAGP 20%L[60]. Reprinted with permission.
图 6 (a)BN保护机理[64],(b)磁控溅射制备超薄ZnO层包覆的LATP[20],(c)LATP和DPCE的全固态电池结构[66],(d)陶瓷粒子随机分布在聚合物基体中和垂直排列的结构[67]
Figure 6. (a) Protection mechanism of BN coating[64]. (b) Ultra-thin ZnO layer coated LATP through magnetron sputtering[20]. (c) Structure of all-solid-state battery with LATP and DPCE[66]. (d) The ceramic particles are randomly distributed in the polymer matrix and the structure of the vertical arrangement[67]. Reprinted with permission.
-
[1] Xu L Q, Li J Y, Deng W T, et al. Garnet solid electrolyte for advanced all-solid-state Li batteries[J]. Advanced Energy Materials,2021,11(2):2000648. doi: 10.1002/aenm.202000648 [2] Xu L Q, Li J Y, Deng W T, et al. Boosting the ionic conductivity of PEO electrolyte by waste eggshell-derived filler for high-performance solid lithium/sodium battery[J]. Materials Chemistry Frontiers,2021,5:1315-1323. doi: 10.1039/D0QM00541J [3] Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy & Environmental Science,2011,4(9):3223-3242. [4] Shi J J, Yin G Q, Jing L M, et al. Lithium and sodium diffusion in solid electrolyte materials of AM2(PO4)3(A=Li, Na, M=Ti, Sn and Zr)[J]. International Journal of Modern Physics B,2014,28(26):1450176. doi: 10.1142/S0217979214501768 [5] Knauth P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics,2009,180(14-16):911-916. doi: 10.1016/j.ssi.2009.03.022 [6] Pérez-Estébanez M, Isasi-Marín J, Többens D M, et al. A systematic study of NASION-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy[J]. Solid State Ionics,2014,266(15):1-8. [7] Arbi K, Mandal S, Rojo J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2- xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study[J]. Chemistry of Materials,2002,14(3):1091-1097. doi: 10.1021/cm010528i [8] Kothari D H, Kanchan D K. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3 Ti1.7(PO4)3(LATP) system on Li+ ion conductivity[J]. Physica B: Condensed Matter,2016,501(15):90-94. [9] Kumar S, Balaya P. Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3[J]. Solid State Ionics,2016,296(15):1-6. [10] Ortiz-Mosquera J F, Nieto-Munoz A M, Rodrigues A C M. New Na1+xGe2(SiO4)x(PO4)3−x NASICON series with improved grain and grain boundary conductivities[J]. Applied Materials & Interfaces,2020,12(12):13914-13922. [11] Ren Y Y, Chen K, Chen R J, et al. Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society,2015,98(12):3603-3623. doi: 10.1111/jace.13844 [12] Kim S H, Shim G I, Choi S Y. High lithium ion conductivity in mechanically milled Nb-doped m-Li3Fe2(PO4)3[J]. Journal of Alloys and Compounds,2017,699(30):662-671. [13] 徐来强, 李佳阳, 刘城, 等. 无机钠离子电池固体电解质研究进展[J]. 物理化学学报,2020,36(5):1905013. doi: 10.3866/PKU.WHXB201905013Xu L Q, Li J Y, Liu C, et al. Research progress in inorganic solid-state electrolytes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2020,36(5):1905013. doi: 10.3866/PKU.WHXB201905013 [14] Pareek T, Dwivedi S, Singh B, et al. LiSnZr(PO4)3: NASICON-type solid electrolyte with excellent room temperature Li+ conductivity[J]. Journal of Alloys and Compounds,2019,777(10):602-611. [15] Pinus I Y, Khoroshilov A V, Gavrichev K S, et al. On cationic mobility in Nasicon phosphates LiTi2(PO4)3 and Li0.9Ti1.9Nb0.1(PO4)3[J]. Solid State Ionics,2012,212(29):112-116. [16] 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术,2015,4(01):1-18. doi: 10.3969/j.issn.2095-4239.2015.01.02Huang Z, Yang J, Chen X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology,2015,4(01):1-18. doi: 10.3969/j.issn.2095-4239.2015.01.02 [17] Kwatek K, Ślubowska W, Trébosc J, et al. Impact of Li2.9B0.9S0.1O3.1 glass additive on the structure and electrical properties of the LATP-based ceramics[J]. Journal of Alloys and Compounds,2020,820(15):153072. [18] Kwatek K, Świniarski M, Nowiński J L. The Li+ conducting composite based on LiTi2(PO4)3 and Li3BO3 glass[J]. Journal of Solid State Chemistry,2018,265:381-386. doi: 10.1016/j.jssc.2018.06.028 [19] Kim K M, Shin D O, Lee Y G. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2−x(PO4)3 solid electrolytes[J]. Electrochimica Acta,2015,176(10):1364-1373. [20] Hao X G, Zhao Q, Su S M, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6 (PO4)3 and Li metal by magnetron sputtering for highly stable solid‐state lithium metal batteries[J]. Advanced Energy Materials,2019,9(34):1901604. doi: 10.1002/aenm.201901604 [21] Jiang C, Li H, Wang C. Recent progress in solid-state electrolytes for alkali-ion batteries[J]. Science Bulletin,2017,62(21):1473-1490. doi: 10.1016/j.scib.2017.10.011 [22] Xie H, Goodenough J B, Li Y T. Li1.2Zr1.9Ca0.1(PO4)3, a room-temperature Li-ion solid electrolyte[J]. Journal of Power Sources,2011,196(18):7760-7762. doi: 10.1016/j.jpowsour.2011.05.002 [23] Catti M, Stramare S. Lithium location in NASICON-type Li+ conductors by neutrondiffraction: II. Rhombohedral α-LiZr2(PO4)3 at T=423 K[J]. Solid State Ionics,2000,136-137(2):489-494. [24] Xie H, Li Y T, Goodenough J B. NASICON-type Li1+2xZr2−xCax(PO4)3 with high ionic conductivity at room temperature[J]. RSC Advances,2011,1(9):1728-1731. doi: 10.1039/c1ra00383f [25] Tabuchi M, Takeuchi T, Kageyama H. Ionic conductivity enhancement in LiGe2(PO4)3 solid electrolyte[J]. Journal of Power Sources,1997,68(2):397-401. doi: 10.1016/S0378-7753(97)02541-X [26] 徐唱. NASICON型LiM2(PO4)3(M=Zr/Hf)固体电解质的制备与性能研究[D]. 赣州: 江西理工大学, 2018.Xu C. Preparation and properties of NASICON LiM2(PO4)3(M=Zr/Hf) solid electrolyte[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. [27] 吕晓娟, 杨东昱. NASICON型无机固态锂离子电解质的研究进展[J]. 化工新型材料,2019,47(01):47-52.Lv X J, Yang D Y. Reviews on NASICON type inorganic solid lithium ion electrolyte[J]. New Chemicl Materials,2019,47(01):47-52. [28] Zhu H Z, Prasad A, Doja S, et al. Spark plasma sintering of lithium aluminum germanium phosphate solid electrolyte and its eectrochemical properties[J]. Nanomaterials,2019,9(8):1086. doi: 10.3390/nano9081086 [29] Yi E J, Yoon K Y, Jung H A, et al. Fabrication and electrochemical properties of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes by sol-gel method[J]. Applied Surface Science,2018,473(15):622-626. [30] Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5[J]. Solid State Ionics,1997,104(3-4):191-194. doi: 10.1016/S0167-2738(97)00434-7 [31] Bucharsky E C, Schell K G, Hintennach A, et al. Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2−x(PO4)3[J]. Solid State Ionics,2015,274(2):77-82. [32] 赵玉超, 蓝凌霄, 梁兴华, 等. Li1.3Al0.3Ti1.7(PO4)3固态电解质的制备及表征[J]. 电源技术,2019,43(01):34-37. doi: 10.3969/j.issn.1002-087X.2019.01.009Zhao Y C, Lan L X, Liang X H, et al. Studies on solid electrolyte materials of Li1.3Al0.3Ti1.7(PO4)3[J]. Chinese Journal of Power Sources,2019,43(01):34-37. doi: 10.3969/j.issn.1002-087X.2019.01.009 [33] Duluard S, Paillassa A, Puech L, et al. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry[J]. Journal of the European Ceramic Society,2013,33(6):1145-1153. doi: 10.1016/j.jeurceramsoc.2012.08.005 [34] Kotobuki M, Koishi M. Preparation of Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes via the co-precipitation method[J]. Journal of Asian Ceramic Societies,2019,7(4):551-557. doi: 10.1080/21870764.2019.1693680 [35] Huang Y, Jiang Y, Zhou Y X, et al. Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes[J]. ChemElectroChem,2019,6(24):6016-6026. doi: 10.1002/celc.201901687 [36] Sun Z J, Liu L, Lu Y X, et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor[J]. Journal of the European Ceramic Society,2019,39(2-3):402-408. doi: 10.1016/j.jeurceramsoc.2018.09.025 [37] Xu X X, Wen Z Y, Gu Z H, et al. High lithium conductivity in Li1.3Cr0.3Ge1.7(PO4)3 glass-ceramics[J]. Materials Letters,2004,58(27):3428-3431. [38] Kazakevicius E, Salkus T, Dindune A, et al. La-doped LiTi2(PO4)3 ceramics[J]. Solid State Ionics,2007,179(1):51-56. [39] Winand J M, Rulmont A, Tarte P. Ionic conductivity of the Na1+xMxIIIZr2−x(PO4)3 systems (M=Al, Ga, Cr, Fe, Sc, In, Y, Yb)[J]. Journal of Materials Science,1990,25:4008-4013. doi: 10.1007/BF00582473 [40] Zając W, Tarach M, Trenczek-Zając A. Towards control over redox behaviour and ionic conductivity in LiTi2(PO4)3 fast lithium-ion conductor[J]. Acta Materialia,2017,140:417-423. doi: 10.1016/j.actamat.2017.08.064 [41] Ortiz-Mosquera J F, Nieto-Muñoz A M, Rodrigues A C M. Precursor glass stability, microstructure and ionic conductivity of glass-ceramics from the Na1+xAlxGe2–x(PO4)3 NASICON series[J]. Journal of Non-Crystalline Solids,2019,513(1):36-43. [42] Venkateswara Rao A, Veeraiah V, Prasada Rao A V, et al. Effect of Fe3+ doping on the structure and conductivity of LiTi2(PO4)3[J]. Research on Chemical Intermediates,2015,41(4):2307-2315. doi: 10.1007/s11164-013-1348-0 [43] Lu Y, Alonso J A, Yi Q, et al. A High‐Performance Monolithic Solid‐State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte[J]. Advanced Energy Materials,2019,9(28):1901205. doi: 10.1002/aenm.201901205 [44] 李立晗. 铝掺杂LiTi2(PO4)3固态电解质的制备及性能研究[D]. 西安: 西安理工大学, 2019.Li L H. Preparation and properties of aluminum-doped LiTi2(PO4)3 solid electrolyte[D]. Xian: Xi’an University of Technology, 2019. [45] Delmas C, Viala J C, Olazcuaga R, et al. Ionic conductivity in NASICON-type phases Na1+xZr2−xLx(PO4)3 (L=Cr, In, Yb)[J]. Solid State Ionics,1981,3(4):209-214. [46] Arbi K, Rojo J M, Sanz J. Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−xZrx(PO4)3 materials followed by NMR and impedance spectroscopy[J]. Journal of the European Ceramic Society,2007,27(13-15):4215-4218. doi: 10.1016/j.jeurceramsoc.2007.02.118 [47] Hupfer T, Bucharsky E C, Schell K G, et al. Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2−x(PO4)3[J]. Solid State Ionics,2016,288:235-239. doi: 10.1016/j.ssi.2016.01.036 [48] Zhang P, Wang H, Si Q, et al. High lithium ion conductivity solid electrolyte of chromium and aluminum Co-doped NASICON-type LiTi2(PO4)3[J]. Solid State Ionics,2015,272:101-106. doi: 10.1016/j.ssi.2015.01.004 [49] He K, Xie P, Zu C K, et al. A facile and scalable process to synthesize flexible lithium ion conductive glass-ceramic fibers[J]. RSC Advances,2019,9(8):4157-4161. doi: 10.1039/C8RA08401G [50] Huang J, Peng J Y, Ling S G, et al. A low cost composite quasi-solid electrolyte of LATP, TEGDME, and LiTFSI for rechargeable lithium batteries[J]. Chinese Physics B,2017,26(6):471-476. [51] Rosenberger A, Gao Y, Stanciu L. Field-assisted sintering of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte[J]. Solid State Ionics,2015,278(1):217-221. [52] Kali R, Mukhopadhyay A. Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective[J]. Journal of Power Sources,2014,247(1):920-931. [53] Tong H, Liu J R, Liu J, et al. Microstructure and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte prepared by spark plasma sintering[J]. Ceramics International,2020,46(6):7634-7641. doi: 10.1016/j.ceramint.2019.11.264 [54] Leo C J, Rao Subba G V, Chowdari B V R. Effect of MgO addition on the ionic conductivity of LiGe2(PO4)3 ceramics[J]. Solid State Ionics,2003,159(3-4):357-367. doi: 10.1016/S0167-2738(03)00032-8 [55] Xiong L L, Ren Z H, Xu Y L, et al. LiF assisted synthesis of LiTi2(PO4)3 solid electrolyte with enhanced ionic conductivity[J]. Solid State Ionics,2017,309(15):22-26. [56] Cao X G, Zhang X H, Tao T, et al. Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J]. Ceramics International,2019,46(6):8405-8412. [57] He Y C, Li B, Duan H, et al. Nano-grass like AlOOH as an Al source for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes with high ionic conductivity[J]. Ceramics International,2020,46(9):14143-14149. doi: 10.1016/j.ceramint.2020.02.221 [58] Kotobuki M, Koishi M. Effect of Li salts on the properties of Li1.5Al0.5Ti1.5(PO4)3 solid electrolytes prepared by the co-precipitation method[J]. Journal of Asian Ceramic Societies,2019,7(4):426-433. doi: 10.1080/21870764.2019.1652971 [59] Kotobuki M, Koishi M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceramics International,2013,39(4):4645-4649. doi: 10.1016/j.ceramint.2012.10.206 [60] Chung H B, Kang B. Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium[J]. Solid State Ionics,2014,263(1):125-130. [61] Wang C H, Sun Q, Liu Y L, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes[J]. Nano Energy,2018,48:35-43. doi: 10.1016/j.nanoen.2018.03.020 [62] Lee W, Lyon C K, Seo J H. Ceramic–salt composite electrolytes from cold intering[J]. Advanced Functional Materials,2019,29(20):807872. [63] Liu Y L, Sun Q, Zhao Y. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition[J]. Applied Material & Interfaces,2018,10(37):31240-31248. [64] Cheng Q, Li A J, Li N, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule,2019,3(6):1510-1522. doi: 10.1016/j.joule.2019.03.022 [65] Zhou W D, Wang S F, Li Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of The American Chemical Society,2016,138(30):9385-9388. doi: 10.1021/jacs.6b05341 [66] Liang J Y, Zeng X X, Zhang X D, et al. Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries[J]. Journal of The American Chemical Society,2019,141(23):9165-9169. doi: 10.1021/jacs.9b03517 [67] Zhai H W, Xu P Y, Ning M Q, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters,2017,17(5):3182-3187. doi: 10.1021/acs.nanolett.7b00715 [68] Wang X, Zhai H W, Qie B Y, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy,2019,60:205-212. doi: 10.1016/j.nanoen.2019.03.051 [69] Zekoll S, Marriner-Edwards C, Ola Hekselman A K, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries[J]. Energy & Environmental Science,2018,11(1):185-201. [70] Palmer M J, Kalnaus S, Dixit M B, et al. A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte[J]. Energy Storage Materials,2020,26:242-249. doi: 10.1016/j.ensm.2019.12.031 -