留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future

AN Fu BAO Xiao-qing DENG Xiao-yang MA Zi-zai WANG Xiao-guang

安复, 包晓清, 邓晓阳, 马自在, 王孝广. 碳基非金属氧还原电催化剂:过去、现在和未来. 新型炭材料(中英文), 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0
引用本文: 安复, 包晓清, 邓晓阳, 马自在, 王孝广. 碳基非金属氧还原电催化剂:过去、现在和未来. 新型炭材料(中英文), 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0
AN Fu, BAO Xiao-qing, DENG Xiao-yang, MA Zi-zai, WANG Xiao-guang. Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater., 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0
Citation: AN Fu, BAO Xiao-qing, DENG Xiao-yang, MA Zi-zai, WANG Xiao-guang. Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Mater., 2022, 37(2): 338-357. doi: 10.1016/S1872-5805(22)60590-0

碳基非金属氧还原电催化剂:过去、现在和未来

doi: 10.1016/S1872-5805(22)60590-0
基金项目: 国家自然科学基金(21878201,22008165)
详细信息
    通讯作者:

    王孝广,教授. E-mail:wangxiaoguang@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future

Funds: National Natural Science Foundation of China (21878201 and 22008165)
More Information
  • 摘要: 近年来,非金属碳基材料在替代高成本Pt基氧还原电催化剂方面表现出巨大研究价值与应用潜力,学者们主要致力于各种非金属纳米炭材料的制备和氧还原性能测试及其实际应用。非金属杂原子掺杂和边缘缺陷设计是典型的纳米炭改性方法,可显著降低ORR在碱性和酸性电解液中的过电位。为了使纳米炭在燃料电池等实际装置中表现出良好的催化活性,还需进一步提升纳米炭的ORR本征活性。纳米炭成分、结构调控与炭催化活性之间的关联也仍需探索。其根本策略是明确纳米炭的ORR反应机理,从而针对活性制约因素提出科学具体的结构改性策略。因此,本文针对非金属碳基催化剂在氧还原催化领域近年来的发展进行总结和展望,以期为未来氧还原催化剂的设计、合成及应用提供相关借鉴。
  • FIG. 1399.  FIG. 1399.

    FIG. 1399.. 

    Figure  1.  Schematic diagram of the working principle of fuel cells.

    Figure  2.  Notable metal-free carbon-based materials for electrocatalysis.

    Figure  3.  A brief chronology of the development of C-MFECs. N-doped carbon nanotube (CNT) (2009)[7], N-doped graphene (2010)[12], B-doped CNT (2011)[13], B/N-codoped CNT (2011)[14], S-edge doped graphene (electron spin effect)[15], edge graphite[16], ORR-oxygen evolution reaction (OER) bifunction/Zn-air battery[17], defect induced ORR in C-cage[18], ORR-hydrogen evolution reaction (HER) bifunction (N/P-carbon)[19], ORR-OER-HER trifunction (N/S-codoped carbon)[20], zigzag edge[21], N-doped carbon in all pH[22], edge pentagon-C as ORR active site[23] and N/S co-doped graphenes with the pentagonal carbon(C5) defect[24].

    Figure  4.  (a) Two kinds of selective modification on the N-doped graphene catalyst. (b) ORR free energy distribution on different configurations. (c) Energy variation when O2 approaches different active sites[45] (Copyright 2018, American Chemical Society).

    Figure  5.  (a) O2 adsorption on B-CNT[13](Copyright 2011, John Wiley and Sons). (b) The process of POMC preparation. (c, d) FESEM and TEM images of POMC-3[33] (Copyright 2012, American Chemical Society). (e) Schematic illustration of S-graphene preparation. (f) TEM images of S-graphene-1050[34] (Copyright 2011, American Chemical Society). (g) Cyclic voltammetry curves of BP-F catalysts with or without O2 in 0.1 mol·L−1 KOH. (h) LSV curves of different BP-F catalysts and commercial 20% Pt/C in O2-saturated 0.1 mol·L−1 KOH[35] (Copyright 2013, American Chemical Society). (i) Schematic illustration of the synthesis route for 2D-PPCN. (j, k) SEM and TEM images of 2D-PPCN[52] (Copyright 2018, American Chemical Society).

    Figure  6.  (a) Bonded N and B co-doped CNT(5,5) and (b) O2 adsorption configuration[27](copyright 2013, American Chemical Society). (c) Schematic illustration of the preparation process for B,N-carbon[53](Copyright 2018, John Wiley and Sons). (d) Schematic illustration of N, F-co-doped porous carbon as ORR electrocatalyst. (e, f) SEM and TEM images of N,F-Carbon-1000[55](Copyright 2017, American Chemical Society).

    Figure  7.  (a) Synthesis illustration of the SHG. (b, c) SEM and TEM images of SHG[20](Copyright 2017, John Wiley and Sons). (d) Schematic illustration of the preparation process for GO-PANi-FP tri-functional electrocatalyst. (e, f) SEM and TEM images of GO-PANi31-FP[61](copyright 2016, John Wiley and Sons).

    Figure  8.  (a) Schematic structural models of the carbon nanocages (I represents the corner. II represents the broken fringe, and III represents the hole. I, II, and III represent three defective locations). (b) HRTEM image of CNC700. (c) Schematic free energy profiles for ORR activities of different defects[18] (https://pubs.acs.org/doi/10.1021/acscatal.5b01835 Further permissions related to the material excerpted should be directed to the ACS). (d) The schematic illustration of the formation of DG. (e) TEM image of DG. (f) Free energy profiles for the ORR pathway on defective graphene in alkaline/acidic media[68](Copyright 2016, John Wiley and Sons).

    Figure  9.  (a) Calculated free energy profiles of the acidic ORR pathways on different configurations and (b) dual heteroatom-tuned C5 defect configurations. (c) TEM image of the DG-NS[24](copyright 2020, Elsevier).

    Figure  10.  (a) Synthesis illustration for CF preparation. (b) Typical SEM image and (c) spin density of the active site in the N-doped sp3/sp2 hybrid[73](Copyright 2019, John Wiley and Sons).

    Figure  11.  Polarization and power density curves of the catalysts with different cathode loadings of (a) 0.25 mg cm−2 and (b) 0.50 mg cm−2 in a PEMFC. (c) Durability of the indicated catalysts in PEMFC[21](Copyright 2018, Springer Nature). (d) The potentials and power densities of ADMFCs with BP-18F and Pt/C (60%) as cathodes[35](Copyright 2013, American Chemical Society). (e) N2 sorption isotherms and pore size distribution for FU. (f) Beginning-of-life H2/O2 AEMFC performance curves with GU and FU as cathode catalysts[81] (Copyright 2017, Elsevier).

    Table  1.   Various heteroatom doped carbon materials for ORR.

    MaterialSynthesis methodChemical content and propertyElectrolyteOnset potential [V vs RHE] and nDurabilityRef.
    Mono-
    doping
    carbon
    N-monodoping
    carbon
    N-doped CNTsPyrolysis of iron(II) phthalocyanine + NH3 vaporN:C atomic ratio in the range of ~4% to 6%0.1 M KOH~100000 cycles[7]
    N-doped grapheneHeat treatment(950 °C) of graphene oxide in an NH3(10%) + Ar(90%) atmospherePyridinic N is about 47%0.5 M H2SO4[45]
    N-doped porous carbonsPyrolysis of D-gluconic acid sodium salt + polypyrrole coating + KOH activationGraphitic N species 49.1% SBET: 1026.6 m2 g−1, Vt: 1.046 cm3 g−10.1 M KOH & 0.5 M H2SO40.942 V, 4.03 &
    0.84 V, 3.93
    95.2% after 50000 s & 94.1% after 50000 s[48]
    N-doped porous carbon spheresPyrolysis of self-assembled urea formaldehyde(UF) resinPyridinic-N and graphitic-N, carbon defects0.1 M KOH & 0.1 M HClO40.99 V, 3.93 & 3.91After 5000 cycles[49]
    Other
    heteroatoms
    doped
    carbon
    B-doped carbon nanotubesCVD method with benzene, triphenylborane(TPB) and ferroceneTunable boron contentof 0–2.24%1 M NaOH−0.26 V(vs SCE), 2.5[13]
    S-doped grapheneAnnealing graphene oxide(GO) and benzyl disulfide(BDS)S content 1.3%, SBET: 435 m2 g−10.1 M KOH−0.08 V(vs Ag/AgCl), 3.8291.1% after 20000 s[34]
    F-doped mesoporous carbon blacksPyrolysis of carbon black(CB) and NH4FF content 0.65%0.1 M KOH−0.104 V(vs SCE), 3.96After 12000 cycles[35]
    P-doped ordered mesoporous carbonsMesoporous silica template with triphenylphosphine and phenolSBET: 1182 m2 g−1, Vt: 1.87 cm3 g−10.1 M KOH−0.11 V(vs Ag/AgCl), 3.91After 4000 cycles[33]
    P-doped carbon nanosheetsMultiple templating processSBET: 1555.8 m2 g−1, Vtotal: 1.383 cm3 g−10.1M KOH0.92 V, ~3.6Over 1000 charge−discharge cycles[52]
    Synergistic
    co-doped
    carbon
    Binary
    heteroatom-
    doped
    carbon
    B and N co-doped CNTsCVD growth or post-treatmentB(1.93%) and N(2.19%) contents1 M NaOH2.5[27]
    N, F co-doped porous carbonPolyaniline and polytetrafluoroethylene polymerization + pyrolysisSBET: 838 m2 g−1, F(0.22%) and N(1.74%) contents0.1M KOH0.97 VAfter 10000 cycles;91%
    after 18000 s
    [55]
    N and P co-doped mesoporous nanocarbonPyrolysis of polyaniline aerogel and phytic acidSBET: 1,663 m2 g−1, Vt: 1.42 cm3 g−10.1M KOH0.94 V,~4.0No change on the current after
    10000 s
    [17]
    N, P-co-doped carbon foamThermal blowing and carbonizing the glucose in the presence of urea and phytic acid(self-sacrificing template)Content of N(5%) and P(2.33%), SBET: 1026 m2 g−10.1 M KOH0.94 V, n value is close to 4.3.6% voltage loss was observed for ~140 h[56]
    N, S co-doped graphitic sheetsShape fixing via salt recrystallizationN(2.1%) and S(0.8%), SBET: 576 m2 g−1, Vt: 1.40 cm3 g−10.1 M KOH1.01 V, between 3.81 and 3.9693% after 100 h[20]
    S and N co-doped carbon tubesHydrothermal route with MnOx nanorods as the reactive templateSBET: > 500 m2 g−1, N(2.75%) and S(0.18%)0.5 M H2SO40.851 V, 3.95–3.8589% after 100 h[58]
    Ternary
    heteroatom
    co-doped
    carbon
    N, P and F tri-doped graphenePyrolysis of polyaniline(PANi)-coated graphene oxide(GO-PANi) and AHFSBET: 512 m2 g−10.1 M KOH3.85[61]
    N, P and S tri-doped holey carbonOne-step pyrolysis of glucose(Glu), tri-thiocyanuric acid(TA) and phosphoric acid(PA)SBET: 1656.0 m2 g−1, Vt: 1.97 cm3 g−1; N, P and S 4.46%, 1.47%, and 1.64%0.1 M KOH & 0.1 M phosphate buffer & 0.1 M HClO40.948 V, 3.82-3.96 & 0.852 V, 3.82-3.76 & 0.815 V, 3.87-3.9596.7% after 10 h & 97.9% after 30000 s & 85.5% after 40000 s[62]
    Note: M—mol L−1
    下载: 导出CSV
  • [1] Wang Q, Hisatomi T, Jia Q, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials,2016,15(6):611-615. doi: 10.1038/nmat4589
    [2] Zhao P, Xu W, Hua X, et al. Facile synthesis of a N-doped Fe3C@CNT/porous carbon hybrid for an advanced oxygen reduction and water oxidation electrocatalyst[J]. Journal of Physical Chemistry C,2016,120(20):11006-11013. doi: 10.1021/acs.jpcc.6b03070
    [3] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352. doi: 10.1038/35104620
    [4] Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C,2007,111(3):1434-1443. doi: 10.1021/jp0647986
    [5] Lee K, Zhang L, Lui H, et al. Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts[J]. Electrochimica Acta,2009,54(20):4704-4711. doi: 10.1016/j.electacta.2009.03.081
    [6] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode[J]. Science,2008,321(5889):671-674. doi: 10.1126/science.1159267
    [7] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [8] Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small,2012,8(23):3550-3566. doi: 10.1002/smll.201200861
    [9] Yu D, Nagelli E, Du F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. Journal of Physical Chemistry Letters,2010,1(14):2165-2173. doi: 10.1021/jz100533t
    [10] Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews,2015,115(11):4823-4892. doi: 10.1021/cr5003563
    [11] Li Y, Tong Y, Peng F. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism[J]. Journal of Energy Chemistry,2020,48:308-321. doi: 10.1016/j.jechem.2020.02.027
    [12] Qu L, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano,2010,4(3):1321-1326. doi: 10.1021/nn901850u
    [13] Yang L, Jiang S, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2011,50(31):7132-7135. doi: 10.1002/anie.201101287
    [14] Wang S, Iyyamperumal E, Roy A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition,2011,50(49):11756-11760. doi: 10.1002/anie.201105204
    [15] Jeon I Y, Zhang S, Zhang L, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect[J]. Advanced Materials,2013,25(42):6138-6145. doi: 10.1002/adma.201302753
    [16] Shen A, Zou Y, Wang Q, et al. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane[J]. Angewandte Chemie-International Edition,2014,53(40):10804-10808. doi: 10.1002/anie.201406695
    [17] Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology,2015,10(5):444-452. doi: 10.1038/nnano.2015.48
    [18] Jiang Y, Yang L, Sun T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis,2015,5(11):6707-6712. doi: 10.1021/acscatal.5b01835
    [19] Zhang J, Qu L, Shi G, et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition,2016,55(6):2230-2234. doi: 10.1002/anie.201510495
    [20] Hu C G, Dai L M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J]. Advanced Materials,2017,29(9):1604942. doi: 10.1002/adma.201604942
    [21] Xue L, Li Y, Liu X, et al. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells[J]. Nature Communications,2018,9:3819. doi: 10.1038/s41467-018-06279-x
    [22] Liu L, Zeng G, Chen J, et al. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices[J]. Nano Energy,2018,49:393-402. doi: 10.1016/j.nanoen.2018.04.061
    [23] Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis,2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4
    [24] Yan X, Liu H, Jia Y, et al. Clarifying the origin of oxygen reduction activity in heteroatom-modified defective carbon[J]. Cell Reports Physical Science,2020,1(7):100083. doi: 10.1016/j.xcrp.2020.100083
    [25] DAI L. Functionalization of graphene for efficient energy conversion and storage [J]. Accounts of Chemical Research, 2013, 46(1): 31–42.
    [26] Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science,2013,6(10):2839-2855.
    [27] Zhao Y, Yang L, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [28] Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2014,53(6):1570-1574. doi: 10.1002/anie.201307319
    [29] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angewandte Chemie-International Edition,2012,51(16):3892-3896. doi: 10.1002/anie.201107981
    [30] Chen P, Xiao T Y, Qian Y H, et al. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity[J]. Advanced Materials,2013,25(23):3192-3196. doi: 10.1002/adma.201300515
    [31] Chen S, Bi J, Zhao Y, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Advanced Materials,2012,24(41):5593-5597. doi: 10.1002/adma.201202424
    [32] Liu Z-W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie-International Edition,2011,50(14):3257-3261. doi: 10.1002/anie.201006768
    [33] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society,2012,134(39):16127-16130. doi: 10.1021/ja306376s
    [34] Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2011,6:205-211.
    [35] Sun X, Zhang Y, Song P, et al. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catalysis,2013,3(8):1726-1729. doi: 10.1021/cs400374k
    [36] Lin Z, Waller G H, Liu Y, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy,2013,2(2):241-248. doi: 10.1016/j.nanoen.2012.09.002
    [37] Jahan M, Bao Q, Loh K P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction[J]. Journal of the American Chemical Society,2012,134(15):6707-6713. doi: 10.1021/ja211433h
    [38] Zhang P, Sun F, Xiang Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2014,7(1):442-450.
    [39] Zhang L, Su Z, Jiang F, et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions[J]. Nanoscale,2014,6(12):6590-6602. doi: 10.1039/C4NR00348A
    [40] Zhou M, Wang H L, Guo S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews,2016,45(5):1273-1307. doi: 10.1039/C5CS00414D
    [41] Wen Z, Wang X, Mao S, et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor[J]. Advanced Materials,2012,24(41):5610-5616. doi: 10.1002/adma.201201920
    [42] Xue Y, Liu J, Chen H, et al. Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells[J]. Angewandte Chemie-International Edition,2012,51(48):12124-12127. doi: 10.1002/anie.201207277
    [43] Wang X, Li X, Zhang L, et al. N-Doping of graphene through electrothermal reactions with ammonia[J]. Science,2009,324(5928):768-771. doi: 10.1126/science.1170335
    [44] Wang Y, Shao Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano,2010,4(4):1790-1798. doi: 10.1021/nn100315s
    [45] Wang T, Chen Z X, Chen Y G, et al. Identifying the active site of N-doped graphene for oxygen reduction by selective chemical modification[J]. ACS Energy Letters,2018,3(4):986-991. doi: 10.1021/acsenergylett.8b00258
    [46] Yu D, Zhang Q, Dai L. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction[J]. Journal of the American Chemical Society,2010,132(43):15127-15129. doi: 10.1021/ja105617z
    [47] Lepro X, Ovalle-Robles R, Lima M D, et al. Catalytic twist-spun yarns of nitrogen-doped carbon nanotubes[J]. Advanced Functional Materials,2012,22(5):1069-1075. doi: 10.1002/adfm.201102114
    [48] Han H, Noh Y, Kim Y, et al. An N-doped porous carbon network with a multidirectional structure as a highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Nanoscale,2019,11(5):2423-2433. doi: 10.1039/C8NR10242B
    [49] Ren G, Chen S, Zhang J, et al. N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Chemistry A,2021,9(9):5751-5758. doi: 10.1039/D0TA11493F
    [50] Tang Y, Allen B L, Kauffman D R, et al. Electrocatalytic activity of nitrogen-doped carbon nanotube cups[J]. Journal of the American Chemical Society,2009,131(37):13200-13201. doi: 10.1021/ja904595t
    [51] Bakhtavar S, Mehrpooya M, Manoochehri M, et al. Proposal of a facile method to fabricate a multi-dope multiwall carbon nanotube as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Sustainabililty,2022,14(2):965. doi: 10.3390/su14020965
    [52] Lei W, Deng Y P, Li G, et al. Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries[J]. ACS Catalysis,2018,8(3):2464-2472. doi: 10.1021/acscatal.7b02739
    [53] Sun T, Wang J, Qiu C, et al. B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Advanced Science,2018,5(7):1800036. doi: 10.1002/advs.201800036
    [54] Zhu P, Gao J, Chen X, et al. An efficient metal-free bifunctional oxygen electrocatalyst of carbon co-doped with fluorine and nitrogen atoms for rechargeable Zn-air battery[J]. International Journal of Hydrogen Energy,2020,45(16):9512-9521. doi: 10.1016/j.ijhydene.2020.01.131
    [55] Lu Y, Yang L, Cao D. Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells[J]. ACS Applied Materials & Interfaces,2017,9(38):32859-32867.
    [56] Yang M, Shu X, Zhang J. A defect-rich N, P co-doped carbon foam as efficient electrocatalyst toward oxygen reduction reaction[J]. Chemcatchem,2020,12(16):4105-4111. doi: 10.1002/cctc.202000363
    [57] Ding W, Li L, Xiong K, et al. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society,2015,137(16):5414-5420. doi: 10.1021/jacs.5b00292
    [58] Sun T, Wu Q, Jiang Y, et al. Sulfur and nitrogen codoped carbon tubes as bifunctional metal-free electrocatalysts for oxygen reduction and hydrogen evolution in acidic media[J]. Chemistry,2016,22(30):10326-10329. doi: 10.1002/chem.201601535
    [59] Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano,2012,6(8):7084-7091. doi: 10.1021/nn3021234
    [60] Choi C H, Chung M W, Park S H, et al. Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient oxygen reduction reaction in acidic media[J]. Physical Chemistry Chemical Physics,2013,15(6):1802-1805. doi: 10.1039/C2CP44147K
    [61] Zhang J T, Dai L M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting[J]. Angewandte Chemie-International Edition,2016,55(42):13296-13300. doi: 10.1002/anie.201607405
    [62] Long Y, Ye F, Shi L, et al. N, P, and S tri-doped holey carbon as an efficient electrocatalyst for oxygen reduction in whole pH range for fuel cell and zinc-air batteries[J]. Carbon,2021,179:365-376. doi: 10.1016/j.carbon.2021.04.039
    [63] Kim H, Lee K, Woo S I, et al. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Physical Chemistry Chemical Physics,2011,13(39):17505-17510. doi: 10.1039/c1cp21665a
    [64] Geng D, Chen Y, Chen Y, et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy & Environmental Science,2011,4(3):760-764.
    [65] Zhang L, Lin C Y, Zhang D, et al. Guiding principles for designing highly efficient metal-free carbon catalysts[J]. Advanced Materials,2019,31(13):1805252. doi: 10.1002/adma.201805252
    [66] Jiao Y, Zheng Y, Jaroniec M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews,2015,44(8):2060-2086. doi: 10.1039/C4CS00470A
    [67] Meng W, Chen W, Zhao L, et al. Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance[J]. Nano Energy,2014,8:133-140. doi: 10.1016/j.nanoen.2014.06.007
    [68] Jia Y, Zhang L Z, Du A J, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28(43):9532-9538. doi: 10.1002/adma.201602912
    [69] Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nature Nanotechnology,2012,7(6):394-400. doi: 10.1038/nnano.2012.72
    [70] Wang S, Zhang L, Xia Z, et al. BCN Graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2012,51(17):4209-4212. doi: 10.1002/anie.201109257
    [71] Jiang Z, Jiang Z J, Tian X, et al. Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2014,2(2):441-450. doi: 10.1039/C3TA13832A
    [72] Ye T N, Lv L B, Li X H, et al. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst[J]. Angewandte Chemie-International Edition,2014,53(27):6905-6909. doi: 10.1002/anie.201403363
    [73] Gao J, Wang Y, Wu H, et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction[J]. Angewandte Chemie International Edition,2019,58(42):15089-15097. doi: 10.1002/anie.201907915
    [74] Zemek J, Houdkova J, Jiricek P, et al. Surface and in-depth distribution of sp2 and sp3 coordinated carbon atoms in diamond-like carbon films modified by argon ion beam bombardment during growth[J]. Carbon,2018,134:71-79. doi: 10.1016/j.carbon.2018.03.072
    [75] Zhu Y, Lin Y, Zhang B, et al. Nitrogen-doped annealed nanodiamonds with varied sp2/sp3 ratio as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemcatchem,2015,7(18):2840-2845. doi: 10.1002/cctc.201402930
    [76] Zhang J, Su D, Zhang A, et al. Nanocarbon as robust catalyst: Mechanistic insight into carbon-mediated catalysis[J]. Angewandte Chemie-International Edition,2007,46(38):7319-7323. doi: 10.1002/anie.200702466
    [77] Gao Y, Hu G, Zhong J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angewandte Chemie-International Edition,2013,52(7):2109-2113. doi: 10.1002/anie.201207918
    [78] Guo D, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science,2016,351(6271):361-365. doi: 10.1126/science.aad0832
    [79] Zhao Y, Wan J, Yao H, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nature Chemistry,2018,10(9):924-931. doi: 10.1038/s41557-018-0100-1
    [80] Van Pham C, Klingele M, Britton B, et al. Tridoped reduced graphene oxide as a metal-free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells[J]. Advanced Sustainable Systems,2017,1(5):1600038. doi: 10.1002/adsu.201600038
    [81] Lua Y, Wangb L, Preußc K, et al. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells[J]. Journal of Power Sources,2017,372:82-90. doi: 10.1016/j.jpowsour.2017.10.037
    [82] Chen Y Z, Wang C, Wu Z Y, et al. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis[J]. Advanced Materials,2015,27(34):5010-5016. doi: 10.1002/adma.201502315
    [83] Zhu J, Xiao M, Song P, et al. Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells[J]. Nano Energy,2018,49:23-30. doi: 10.1016/j.nanoen.2018.04.021
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1176
  • HTML全文浏览量:  645
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-11-13
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回