Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials
-
摘要: 基于可再生、间歇性的能源驱动的二氧化碳(CO2)电还原制甲酸(HCOOH)技术是二氧化碳转化利用的重要途径。本文详细介绍了CO2的物理化学性质及其电还原生成HCOOH的反应机理;综述了近年来碳基材料在电还原CO2制HCOOH中的研究进展,包括无金属的碳催化剂和碳负载型催化剂。在此基础上,总结和评述了电化学反应器的设计和优化策略。以CO2电还原耦合甲醇电氧化反应为例,分析了CO2杂化电解技术的优势。最后,提出了目前电还原CO2制HCOOH的关键科学技术问题和未来的发展方向,以期为该技术的进一步发展提供新的思路和指导。Abstract: The electroreduction of carbon dioxide (CO2) driven by renewable energy is an important route for CO2 conversion and utilization. Formic acid (HCOOH), as an important chemical and safe hydrogen storage material, is one of the main and promising materials for CO2 electroreduction. The physical and chemical properties of CO2 and the reaction mechanisms for its electroreduction to HCOOH are outlined and the recent development of carbon-based catalysts, including metal-free carbon catalysts and carbon-supported catalysts, for CO2 electroreduction to HCOOH is reviewed. The design of reactors for HCOOH production and strategies for their optimization are summarized and discussed. Hybrid CO2 electrolysis technology is analyzed, such as electroreduction coupled with the methanol electrooxidation reaction. Lastly, key challenges and development trends for CO2 electroreduction to HCOOH are presented, which are expected to provide guidance for the development of this technique.
-
Key words:
- Carbon-based materials /
- CO2 electroreduction /
- Formic acid /
- Reactor
-
Figure 2. (a) Linear sweep voltammetry curves over different GNDs catalysts for CO2RR. (b) FEHCOO− over different GNDs catalysts for CO2RR. (c) Models of carbon catalysts with different configurations containing oxygen functional groups. (d) Gibbs free energy of CO2RR and HER over carbon catalysts with different configurations of oxygen-containing functional groups[31]. Reprinted with permission by American Chemical Society.
Figure 3. (a) Fabrication of DEA-SnOx/C catalyst. (b) Mechanism diagram of electrochemical CO2RR to HCOO-[33]. Reprinted with permission by American Chemical Society. (c) Schematic illustration of the preparation of VO-SnOx/CF catalyst. (d, e) SEM images of VO-SnOx/CF[34]. Reprinted with permission by Royal Society of Chemistry. (f) Schematic diagram of electrochemical CO2RR on Cu@C catalyst. (g) Electrochemical performance over the Cu@C catalyst covering FEHCOOH and HCOOH formation rate[35]. Reprinted with permission by Elsevier.
Figure 4. (a) Schematic fabrication process for S-doped Bi2O3-CNT. (b) FEHCOOH over a series of catalysts at different applied voltages. (c) Schematic diagram of the S species-promoted effects on CO2RR to HCOOH[36]. Reprinted with permission by American Chemical Society. (d) Mechanism diagram for CO2RR to HCOOH over N, S-doped SnO2/NSC[37]. Reprinted with permission by American Chemical Society. (e) Schematic fabrication process for In-N-C[38]. Reprinted with permission by American Chemical Society.
Figure 5. (a) Preparation diagram of carbon nanorods-encapsulated Bi2O3 (Bi2O3@C). (b) TEM image of Bi2O3@C. (c) FEHCOOH over catalyst at different potentials vs. RHE[40]. Reprinted with permission by WILEY-VCH. (d) Schematic fabrication process for CuBi-C. (e) FEHCOOH over different catalysts under various voltages[41]. Reprinted with permission by Elsevier.
Figure 7. (a) Schematic of CO2RR and MOR. (b) LSV curves of CO2RR and MOR. (c) FEformate of CO2RR and MOR[16]. Reprinted with permission by WILEY-VCH.
-
[1] Lin S, Diercks C, Zhang Y, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science,2015,349(6253):1208-1213. doi: 10.1126/science.aac8343 [2] Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO2 electrocatalysts using active machine learning[J]. Nature,2020,581(7807):178-183. doi: 10.1038/s41586-020-2242-8 [3] Zhang G, Zhao Z, Cheng D, et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate[J]. Nature Communications,2021,12(1):5745. doi: 10.1038/s41467-021-26053-w [4] Huang J, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science,2021,372(6546):1074-1078. doi: 10.1126/science.abg6582 [5] Ma W, Xie S, Liu T, et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper[J]. Nature Catalysis,2020,3(6):478-487. doi: 10.1038/s41929-020-0450-0 [6] Birdja Y, Pérez-Gallent E, Figueiredo M, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy,2019,4(9):732-745. doi: 10.1038/s41560-019-0450-y [7] Li F, Mocci F, Zhang X, et al. Ionic liquids for CO2 electrochemical reduction[J]. Chinese Journal of Chemical Engineering,2021,29(3):75-93. [8] Arquer F, Dinh C, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2[J]. Science,2020,367(6478):661-666. doi: 10.1126/science.aay4217 [9] Kim J, Hong D, Lee J, et al. Quasi-graphitic carbon shell-induced Cu confinement promotes electrocatalytic CO2 reduction toward C2+ products[J]. Nature Communications,2021,12(1):3765. doi: 10.1038/s41467-021-24105-9 [10] Liu Y, Mccrory C. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation[J]. Nature Communications,2019,10(1):1683. doi: 10.1038/s41467-019-09626-8 [11] Zhu M, Zhang L, Liu S, et al. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chinese Chemical Letters,2020,31(7):1961-1965. doi: 10.1016/j.cclet.2020.01.017 [12] Li J, Wang L, Cao Y, et al. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chinese Journal of Chemical Engineering,2018,26(11):2266-2279. doi: 10.1016/j.cjche.2018.07.008 [13] Cui S, Yu C, Tan X, et al. Achieving multiple and tunable ratios of syngas to meet various downstream industrial processes[J]. ACS Sustainable Chemical Engineering,2020,8(8):3328-3335. doi: 10.1021/acssuschemeng.9b07255 [14] Dong Y, Zhang Q, Tian Z, et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction[J]. Advanced Materials,2020,32(28):2001300. doi: 10.1002/adma.202001300 [15] Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications,2013,4(1):2819. doi: 10.1038/ncomms3819 [16] Cao C, Ma D, Jia J, et al. Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts[J]. Advanced Materials,2021,33(25):2008631. doi: 10.1002/adma.202008631 [17] Fan J, Zhao X, Mao X, et al. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion[J]. Advanced Materials,2021,33(35):2100910. doi: 10.1002/adma.202100910 [18] Wang Y, Liu J, Zheng G. Designing copper-based catalysts for efficient carbon dioxide electroreduction[J]. Advanced Materials,2021,33(46):2005798. doi: 10.1002/adma.202005798 [19] Zhang Y, Liu J, Wei Z, et al. Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces[J]. Journal of Energy Chemistry,2019,33:22-30. doi: 10.1016/j.jechem.2018.08.017 [20] Tan X, Yu C, Zhao C, et al. Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2[J]. ACS Applied Materials Interfaces,2019,11(10):9904-9910. doi: 10.1021/acsami.8b19111 [21] Kim C, Cho K, Park K, et al. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2[J]. Advanced Functional Materials,2021,31(32):2102142. doi: 10.1002/adfm.202102142 [22] Li M, Ma Y, Chen J, et al. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+[J]. Angewandte Chemie International Edition,2021,60(20):11487-11493. doi: 10.1002/anie.202102606 [23] Li J, Zan W, Kang H, et al. Graphitic-N highly doped graphene-like carbon: a superior metal-free catalyst for efficient reduction of CO2[J]. Applied Catalysis B:Environmental,2021,298:120510. doi: 10.1016/j.apcatb.2021.120510 [24] Liu C, Wu Y, Sun K, et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window[J]. Chem,2021,7(5):1297-1307. doi: 10.1016/j.chempr.2021.02.001 [25] Jia L, Sun M, Xu J, et al. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals[J]. Angewandte Chemie International Edition,2021,60(40):21741-21745. doi: 10.1002/anie.202109288 [26] Jeon H, Timoshenko J, Rettenmaier C, et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction[J]. Journal of the American Chemical Society,2021,143(19):7578-7587. doi: 10.1021/jacs.1c03443 [27] Qiu X, Zhu H, Huang J, et al. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites[J]. Journal of the American Chemical Society,2021,143(19):7242-7246. doi: 10.1021/jacs.1c01466 [28] Meng Z, Luo J, Li W, et al. Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal-organic frameworks[J]. Journal of the American Chemical Society,2020,142(52):21656-21669. doi: 10.1021/jacs.0c07041 [29] Liu S, Yang H, Hung S, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst[J]. Angewandte Chemie International Edition,2019,59(2):798-803. [30] Wang M, Torbensen K, Salvatore D, et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine[J]. Nature Communications,2019,10(1):1-8. doi: 10.1038/s41467-018-07882-8 [31] Yang F, Ma X, Cai W, et al. Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction[J]. Journal of the American Chemical Society,2019,141(51):20451-20459. doi: 10.1021/jacs.9b11123 [32] Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials[J]. Journal of the American Chemical Society,2014,136(22):7845-7848. doi: 10.1021/ja5031529 [33] Cheng Y, Hou J, Kang P. Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles[J]. ACS Energy Letters,2021,6(9):3352-3358. doi: 10.1021/acsenergylett.1c01553 [34] Li H, Xiao N, Wang Y, et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A,2020,8(4):1779-1786. doi: 10.1039/C9TA12401B [35] Yang F, Jiang C, Ma M, et al. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid[J]. Chemical Engineering Journal,2020,400:125879. doi: 10.1016/j.cej.2020.125879 [36] Liu S, Gao M, Feng R, et al. Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate[J]. ACS Catalysis,2021,11(12):7604-7612. doi: 10.1021/acscatal.1c01899 [37] Yuan L, Jiang W, Liu X, et al. Molecularly engineered strong metal oxide–support interaction enables highly efficient and stable CO2 electroreduction[J]. ACS Catalysis,2020,10(22):13227-13235. doi: 10.1021/acscatal.0c03831 [38] Lu P, Tan X, Zhao H, et al. Atomically dispersed indium sites for selective CO2 electroreduction to formic acid[J]. ACS Nano,2021,15(3):5671-5678. doi: 10.1021/acsnano.1c00858 [39] Liu X, Yue T, Qi K, et al. Metal-organic framework membranes: From synthesis to electrocatalytic applications[J]. Chinese Chemical Letters,2020,31(9):2189-2201. doi: 10.1016/j.cclet.2019.12.009 [40] Deng P, Yang F, Wang Z, et al. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate[J]. Angewandte Chemie International Edition,2020,59(27):10807-10813. doi: 10.1002/anie.202000657 [41] Yang Z, Wang H, Fei X, et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate[J]. Applied Catalysis B:Environmental,2021,298:120571. doi: 10.1016/j.apcatb.2021.120571 [42] Zhu M, Yang D, Ye R, et al. Inductive and electrostatic effects on cobalt porphyrins for heterogeneous electrocatalytic carbon dioxide reduction[J]. Catalysis Science & Technology,2019,9(4):974-980. [43] Ma D, Han S, Cao C, et al. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization[J]. Energy & Environmental Science,2021,14(3):1544-1552. [44] Ren S, Joulie D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science,2019,365(6451):367. doi: 10.1126/science.aax4608 [45] Tan X, Yu C, Ren Y, et al. Recent advance in innovative strategies for CO2 electroreduction reaction[J]. Energy & Environmental Science,2021,14(2):765-780. [46] Kim D, Choi W, Lee H, et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer[J]. ACS Energy Letters,2021,6(10):3488-3495. doi: 10.1021/acsenergylett.1c01797 [47] Jeong H, Balamurugan M, Choutipalli V, et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts[J]. Journal of Materials Chemistry A,2019,7(17):10651-10661. doi: 10.1039/C9TA02405K [48] Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature Energy,2019,4(9):776-785. doi: 10.1038/s41560-019-0451-x [49] Yang J, Wang X, Qu Y, et al. Bi‐based metal‐organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction[J]. Advanced Energy Materials,2020,10(36):2001709. doi: 10.1002/aenm.202001709 [50] Pan B, Yuan G, Zhao X, et al. Highly dispersed indium oxide nanoparticles supported on carbon nanorods enabling efficient electrochemical CO2 reduction[J]. Small Science,2021,1(10):2100029. doi: 10.1002/smsc.202100029 [51] Zhang M, Wei W, Zhou S, et al. Engineering conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability[J]. Energy & Environmental Science,2021,14(9):4998-5008. [52] Li L, Ozden A, Guo S, et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites[J]. Nature Communications,2021,12(1):5223. doi: 10.1038/s41467-021-25573-9 [53] Wang Z, Zhou Y, Xia C, et al. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst[J]. Angewandte Chemie International Edition,2021,60(35):19107-19112. doi: 10.1002/anie.202107523 [54] Fan L, Xia C, Zhu P, et al. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor[J]. Nature Communications,2020,11(1):3633. doi: 10.1038/s41467-020-17403-1 [55] Tan X, Yu C, Song X, et al. Toward an understanding of the enhanced CO2 electroreduction in NaCl electrolyte over CoPc molecule‐implanted graphitic carbon nitride catalyst[J]. Advanced Energy Materials,2021,11(30):2100075. doi: 10.1002/aenm.202100075 -